The Importance of pH Control in Biological Wastewater Treatment

The Encyclopedia of Ecology defines biological wastewater treatment as a process where “organisms assist in environmental cleanup through their own life-sustaining activities.” Instead of treating water with chemicals, algae, beneficial bacteria, fungi, metazoan, and protozoa are all microorganisms used to feed on the organic material, which is important to their lifecycle and also helps clean the water.

But, as microorganisms eat these materials, they produce methane and carbon dioxide. The resulting odors make it a less-than-desirable process for anyone living downwind of a wastewater treatment facility. This is a leading reason pH control is an important part of biological wastewater treatment.

The Benefits of pH Control in Biological Wastewater Treatment

A balanced or neutral pH is 7.0, but pH can range from 0 to 14. If it is higher than 7.0, wastewater is acidic and needs to be lowered. If it’s over 7.0, it’s alkaline and needs to be lowered. 

Before treatment begins, raw wastewater usually has a pH as low as 6 or as high as 8. When it’s high, it’s often caused by too much algae growth in open wastewater lagoons or the wastewater is already high because of industries that use lime, lye, or sodium hydroxide.

A low pH is often because of high ammonia levels. It’s the most common problem wastewater facilities face when they use activated sludge systems. By making sure you keep the pH balanced, your plant benefits in several ways. 

Heightened Efficiency

Plants with a healthy pH work efficiently. They’re less likely to run into imbalances that require extra effort to repeat water treatment steps to remove extra sludge, increase aeration, and grow healthy colonies of microorganisms. You treat water faster, better, and more cost-effectively.

Reduced Sludge Production

When your wastewater has a balanced pH, sludge production lowers and sludge disposal costs drop. You have less sludge to compost, incinerate, or haul to a landfill, which means you save money.

Improved Removal of Organic Matter

Healthy microorganisms remove more organic matter. When water is treated quickly, it lowers your energy consumption and saves your plant money. You’re also not releasing treated water to area lakes, streams, and rivers before it’s safe, which can lead to massive fines for raw sewage releases.

You’re not sacrificing quality for savings. You get both, which makes everyone happy.

Compliance With EPA Regulations

When a permit is issued, every wastewater treatment plant has EPA standards they must meet before releasing treated water to a water treatment plant for reuse or to a local body of water. If you’re not in compliance, the EPA can issue fines.

Fines for negligent violations range from $2,500 to $25,000 per day and up to a year in prison for the first violation or two years and up to $50,000 from the second year on. 

Intentional violations have fines of $5,000 to $50,000 per day and a 3-year sentence. Subsequent violations increase the fines to as much as $100,000 per day.

If a wastewater treatment plant violates its limits due to the acts of an industry that violated pre-treatment, the industrial business can be fined. It’s just as important for a company to pre-treat any industrial wastewater. In 2023, a beef processing plant in Nebraska paid $275,000 in fines for failing to properly treat its wastewater before releasing it. This wasn’t the first time, the company paid $1.2 million in fines in 2011.

What Happens if You Don’t Control Your Wastewater’s pH?

A lot can go wrong when you’re not monitoring and correcting your wastewater’s pH.  The microorganisms you use will slow down and grow at a slower pace. That allows harmful bacteria to increase their activity. As the balance of microorganisms and bacteria become imbalanced, your wastewater treatment plant loses stability. You’ll end up having to start over to have a thriving colony of microbes again.

Because your microorganisms aren’t thriving, organic matter and pollutants aren’t effectively removed from your wastewater. Sludge increases and becomes harder to get out of the wastewater, as it doesn’t settle as quickly.

Imbalanced pH levels can also corrode your equipment and damage your municipality’s infrastructure. It also puts area waterways at risk of contamination and problems with algal blooms, which harm the wildlife and aquatic life.

Plus, you face the fines from the EPA as listed above. Having properly treated wastewater is important before you release wastewater into a lake, ocean, or other body of water. You need a system that works quickly, correctly, and handles higher flow rates.

The EPA fined a Massachusetts wastewater treatment plant $200,000 for combined sewer overflows when heavy rain increased flow rates. As they’d been fined back in 1988 for the same issue, they must spend $200 million to separate their sewer and stormwater runoff systems. 

Tips for Maintaining Proper pH Control 

How do you ensure you have the right pH in every stage of wastewater treatment? There are several things to do. It’s not a one-size-fits-all situation. Your wastewater treatment plant’s flow rates and contaminants play a role. A wastewater treatment plant dealing with mainly residential wastewater will have different needs than one surrounded by restaurants and businesses.

Add Acids or Alkalis 

When the pH is too high, acids need to be added. Plants may use carbon dioxide or sulfuric acid to lower the pH. If the pH is too low, lime or caustic soda are possible additions.

Add Buffering Agents 

Once the pH levels are balanced, they need to be stabilized. This is done with chemicals like carbonates or phosphates. Ideally, you want to take steps that stabilize pH from the start. Optimizing wastewater treatment processes is ideal.

Implement Real-Time pH Measurements 

Plant automation saves a lot of time and hassle. Look into sensors that continually measure pH, temperature, dissolved oxygen, and other important aspects listed in your EPA permits. When you have real-time information on your wastewater’s quality, it’s easy to take corrective measures to maintain proper pH control.

Optimize Your Plant’s Processes

Instead of needing to use things like lime or sulfuric acid, optimize your plant. Aeration, organic loading, and establishing healthy levels of nutrients are important. This requires having the best equipment with aerators, real-time monitoring, screening, and filtration. 

If you’re aiming for a functioning, effective biological wastewater system, you need the best equipment for the job. Talk to Lakeside Equipment, experts in clean water, to find out what your plant is doing well and what will help ensure your pH levels remain balanced and keep your system in perfect order.

The History and Evolution of Wastewater Treatment Plants

Water treatment structures date back to the years BC. Records in Ancient Greek and Sanskrit writings go back as far as 4000 BC detailing the steps used to clean and treat water. They’d boil or expose the water to sunlight and filter it through charcoal to remove odors and unpleasant tastes and make it clear instead of cloudy. Ancient Egyptians’ records showed they’d use alum to settle cloudy water. 

Those are the earliest recorded methods used to treat water. Technology has changed a lot over that time. Wastewater treatment plants have come a long way. Take a closer look at the evolution of wastewater treatment over the centuries.

Filtration Becomes a Popular Option for Removing Particles

While the Ancient Romans and Egyptians may have been the first to focus on filtration, the method of filtration would change over the years. 

To treat water, you had to also look at turbidity. What is turbidity? It’s a measurement of particles like organics, sediment, etc. in water. When water is turbid, it’s cloudier. 

In the 1800s, Europeans used sand, which was readily available, to filter water. Cholera outbreaks in the 1800s would raise the awareness of needing more than filtration as microscopic organisms, bacteria, and viruses weren’t always caught with filters.

This was especially important in 1855 when Dr. John Snow proved cholera was a waterborne illness. Louis Pasteur also demonstrated this when he demonstrated how microscopic organisms passed through things like milk and water, leading to pasteurization. Filtration wasn’t enough. 

Facilities for Treating Wastewater Were Also Necessary

Filtering wastewater was only a small part of the process. As past generations learned, there also had to be a way to get wastewater to that facility and ponds, vats, or pools that would store the wastewater while it was treated. This led to advancements in the structures used for treating the water. 

The Indus Valley Civilization

The Indus were the first culture known to have indoor plumbing. They had terracotta pipes that led from buildings to brick-lined drain ditches in the city, where waste went into underground tunnels and back into the environment. The problem was that no one at that time understood the impact this untreated sewage had on the soil and water supplies in the area.

The Rise of Pollution in the 18th and 19th Centuries

Getting back to the Indus, it wasn’t until the Industrial Revolution that people understood the issues surrounding untreated sewage returning to rivers, streams, lakes, and oceans. As urbanization increased people flocked to cities for work. 

You’ve probably heard of the past when people used buckets instead of a working toilet and emptied those buckets into channels along the road. Eventually, all of that waste ended up in rivers. The Thames in London was one of them. 

Wastewater from industries also ended up in the Thames, but the tributaries leading to the Thames were where Londoners and outlying communities gathered their drinking water. Essentially, people were drinking sewage water and making themselves sick with diseases like cholera and typhoid. Better wastewater treatment systems became an urgency.

The Metropolis Water Act was passed in 1952, which banned the use of water from the Thames. People and water delivery companies had to start sourcing water from other areas. The use of sand and crushed shells was also required as a means to purify water. But, it didn’t stop the “Great Stink of 1858.” All of the waste in the Thames heated up during an unusually hot summer. The city reeked of raw sewage, which spurred the need for a better solution.

In 1865, London’s first wastewater treatment plant was built. It used gravity to settle waste in the water so that those solids could then be removed before the water went into the Thames. It wasn’t perfect, but it was a start. 

As science learned more about raw sewage, the need for biological treatments came into play. The activated sludge process, which is still used today, was established in 1914. Microorganisms were used to help feed on the organic matter in wastewater and help break it down more quickly. 

The First Laws Regarding Wastewater Hit the U.S.

While other countries went through their own woes regarding wastewater, the U.S. watched the population grow as people left Europe for America. Per the 1900 Census, the population reached 76.3 million that year. New York, Pennsylvania, Illinois, and Ohio were the most populous states at that time. Wastewater issues were arising and regulations were needed. Therefore, the U.S. passed The Federal Water Pollution Control Act of 1948

Surprisingly, the first major law in the U.S. didn’t pass until 1948, but it wasn’t as good as it needed to be, so drastic changes were made to it in 1972. Renamed The Clean Water Act, it set national regulations for the release of wastewater into U.S. waters. It handed the EPA the authority to establish pollution control standards and programs. It finally made it illegal for people to discharge wastewater without a valid permit, and cities wanting to build wastewater treatment plants had construction grants available.

The Future of Wastewater Treatment

Where is the future heading? The environment is a driving factor in wastewater treatment. With water pollution a problem in the world’s streams, ponds, rivers, lakes, and oceans posing a risk to animals, aquatic creatures, and the environment, wastewater treatment has to be done correctly, quickly, and efficiently. Problematic raw sewage dumps from flooding are problematic and have to be addressed. 

To address these problems, researchers are looking at a few specific areas of water treatment operations.

Advanced Treatment Requirements

You’ve probably heard about microplastics. These tiny particles of plastic are being found on everything from bees to the blood of humans. There are also PCBs, a manmade forever chemical that is tied to cancer and developmental issues in fetuses and children.

Finding a way to remove microplastics from wastewater is important, but it has to be done cost-effectively, and the treatments used have to get as much microplastic and PCBs as possible, which can be a big hurdle to overcome.

Artificial Intelligence, Automation, and Smart Technology

Artificial intelligence, AI for short, automation, and smart technology are certain to play a big role in helping wastewater treatment plants optimize their performance and lower energy consumption. With smart technology, operators won’t have to drop everything to go check on settings or test results, they could be doing a hands-on task and get insights through voice commands. 

AI and automation can analyze and make immediate adjustments without needing a wastewater treatment plant operator to drop everything and go adjust settings. It will be possible for engineers to get reports when they’re off-duty. If there’s an emergency, they’ll get a notification. Otherwise, the AI technology and automated system monitors and adjusts to optimize performance.

Pre-Treatment for Industries

Industrial wastewater from manufacturing plants, food processors, and even breweries strains wastewater treatment plants. The extra work needed to treat that wastewater takes more time, energy, and money. 

In some communities, it’s becoming a concern and measures are being taken to prevent this additional strain. Smaller on-site wastewater treatment plants are being required to pre-treat water before it goes to the sewers. Grease traps in restaurants also help.

Expanding the use of treated wastewater for irrigation, industrial processes, and even drinking water after further treatment.

Reuse

Across the country, some areas are running out of drinking water. The reuse of wastewater is going to be the future. Some communities are already doing this with great success. Sewer water goes through wastewater treatment and travels to a water treatment section where it’s purified for use as drinking water and typical household use for laundry, showers/baths, and cooking.

Wastewater treatment plants keep evolving, and the introduction of automation and AI to the equipment is expected to make wastewater treatment more efficient and effective. With this technology carefully monitoring flow rates, storm patterns, and processes, energy consumption decreases, which drives down the cost of treating water, which your community will appreciate. Plus, the risks of raw sewage releases decrease, which is better for the environment.

Embrace the future of wastewater treatment by working with an expert. Lakeside Equipment has been helping clean water for close to a century. You won’t find a company with more expertise and insights into cleaning water effectively and efficiently. Talk to Lakeside Equipment about the improvements that set your facility up for the future.

Wastewater Clarifiers and Sludge Management: Integrated Approaches

In the U.S. alone, there are over 16,000 publicly-owned wastewater treatment facilities. Those plants treat around 34 billion of wastewater every day. Yes, that’s billions, not millions, per day. About 75% of U.S. households have their sewage treated at a municipal wastewater treatment plant, and the heart of any treatment process is to separate the water from the waste products. 

It’s clear what happens with water once it’s cleaned and meets EPA guidelines for release back to a water source or water treatment plant for household use, but what about the sludge? Where do the solids end up? It comes down to integrated approaches between wastewater clarifiers and sludge management.

Wastewater Clarifiers: Understanding Their Role in Wastewater Treatment

When wastewater enters a facility from sewer lines or septage haulers, it’s a messy mix of solids, water, and even trash. Solids like plastic, flushable wipes, food particles, lint, dirt/grit, toilet paper, and feces have to be separated. 

Trash rakes can remove items like plastic applicators, toys that children flush without realizing how bad that is, and other pieces of trash. This equipment can also capture things like bones of animals that died in the sewers or that came in from food manufacturing plants.

The remaining wastewater continues to clarifiers where filters capture solids and sludge sinks to the bottom for easier removal. The remaining water moves to additional treatment steps. There are also different clarifiers:

Primary:

Primary treatment begins with sewage entering the plant and passing through screens and trash rakes. It then moves to a grit chamber to remove items like pebbles, sand, and other gritty particles that could damage seals and mechanical aspects of the wastewater treatment equipment. 

Secondary:

Secondary treatment is beneficial for removing some of the harmful contaminants and nutrients found in wastewater. Wastewater may pass through trickling filters to help capture some of the pollutants, bacteria, and chemical hazards. PCBs are a newer concern.

Another aspect of secondary treatments is the use of activated sludge, which adds oxygen and encourages microorganisms to digest some of the tiny particles of sludge, which speeds up the treatment process. 

Tertiary:

It used to be that primary and secondary clarification processes were enough. That’s no longer the case. Tertiary is used to help remove non-biodegradable pollutants like nitrogen and phosphorus. This is especially important as those two items are known for increasing the growth of algal blooms in lakes, rivers, and other water sources. Algal blooms harm fish and wildlife.

Tertiary clarification also helps remove dissolved salts, heavy metals, parasites, and viruses that secondary clarification measures couldn’t remove. 

As sludge settles throughout the clarification process, you have all of that sludge and solids that must be managed. This is where a sludge management plan is essential.

Sludge Management: Regulatory Concerns and How It’s Managed

All wastewater treatment plants have a permit from the EPA that regulates the amount of different minerals, chemicals, and metals that can remain in the water that’s released. Staying within these limits is essential for avoiding fines. The same requirements are in place for any sludge. 

Sludge ends up being used in one of three ways. Some plants send it to landfills where it joins other trash. It can be composted and eventually used to provide nutrients to plants and trees in fields and forests. It can also be burned in incinerators.

With wastewater treatment, the breakdown of sludge as microorganisms feed off tiny articles does release methane. That methane can be captured and used as an alternative fuel for heating and cooling the buildings in a wastewater treatment plant, which is a great way to use the resources created from treatment processes.

When the sludge is going to be used for land application, it must first be tested to make sure that the arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, PCBs, selenium, and zinc levels do not exceed maximum concentrations.

In addition, land application requires pathogen controls to meet Class A or Class B rules. Class A applies to sludge that is applied to home gardens and lawns. Class B is only offered if the sludge fertilizer will not come into contact with food crops for grazing pastures for a specified period. Once a farm or ranch uses sludge as a fertilizer, it may be upwards of three years before anything is allowed to grow in that field, or animal fodder can be harvested from it.

In 2022, the Michigan Department of Agriculture and Rural Development found that an area farm had used untreated sewage for fertilizer. The resulting crops were sold to grocery stores and directly to consumers. 

Over a dozen retailers had to tell shoppers to stop using the cabbage, cucumbers, eggplant, green beans, onions, peppers, summer squash, sweet potatoes, tomatoes, and zucchini that the stores had sold due to the risk of e. coli, hepatitis A, norovirus, and rotavirus. That’s why it’s so important to follow EPA guidelines.

The Future of Sludge Management

With AI and automation increasing in use, it’s only going to get easier to remove as much sludge as possible and ensure that it’s managed properly. Whether you use it for power generation or sell it as fertilizer, you’ll benefit from having AI continually test and analyze results to tell you when it’s optimal to move to the next stage.

Another benefit of AI is that it can closely track flow rates and increase pumps and motors to avoid having your plant flood during a long storm or be forced to release untreated sewage into the environment. If something is wrong, AI could divert lines to ensure extra wastewater goes to holding tanks until things calm down.

For many years, other countries have used cow patties to make bricks and build homes. The reuse of purified sludge as concrete filler, concrete aggregates, and brick-making materials is another trending use. It’s an eco-friendly way to use sludge and stop taking up valuable space in landfills.

The Best Approaches For Integrating Clarification and Sludge Management

When you’re establishing a wastewater treatment facility or upgrading your equipment, you want to make sure you follow the EPA’s guidelines. You also need to follow state regulations. It’s best to work with experts in wastewater management equipment to ensure you’re creating a feasible, efficient, cost-effective system that removes sludge as quickly as possible and uses that sludge as a valuable resource.

It’s also best to work with manufacturers and industrial plants to ensure they’re pre-treating wastewater. It reduces the burden on your plant. If you have three poultry processing plants nearby, the number of bone fragments, feathers, and fatty tissue will drive up water treatment costs, which makes locals unhappy as rates increase. Make sure area businesses are doing their part.

As weather patterns keep shifting and leading to storms of unprecedented levels, wastewater treatment plant owners and operators need solutions that separate sludge and treat wastewater quickly and effectively. Raw sewage releases during heavy rainfall aren’t good for the environment’s animals, people, and aquatic life. 

Make sure your plant is ready for the future. Recover valuable resources, protect the planet, and do all of this while reducing overall costs. Lakeside Equipment can help you develop a sustainable, efficient sludge management process. With close to 100 years in water treatment, we have the insights and equipment your plant needs for optimal performance.

Mechanical vs. Chemical Wastewater Clarification: The Pros and Cons

According to the Cybersecurity & Infrastructure Security Agency, the U.S. has 16,000 public wastewater treatment systems. In addition, the EPA estimates that over 20% of U.S. households are on an individual septic system or community cluster system. The wastewater that comes from these systems requires careful treatment to remove pathogens, pollutants, and solid waste. 

When a wastewater treatment facility gets wastewater from the sewer system or trucks that pump it out of septic tanks, it needs to be screened to remove plastic and other hard waste like branches, bones, etc. It must have the sludge and fats/oils/grease (FOG) removed, and the remaining wastewater must be carefully tested until it meets EPA guidelines. Only then can it return to a body of water or water treatment plant for reuse. 

Wastewater clarification and sanitizing is essential to prevent the spread of disease. It also prevents contamination in lake and river water, which can help algae blooms thrive and harm aquatic animals and animals that use that water for swimming or drinking. It keeps bacteria from entering into the meat of shellfish that people eat. To make sure water is clarified correctly, water treatment plants use mechanical or chemical clarification, and each has pros and cons.

How Does Mechanical Clarification Work?

Mechanical clarifiers are tanks where wastewater settles after passing through filters that capture solids like fat deposits, menstrual products, plastic wrappers, etc. Skimmers run over the top of the tank in continual circles picking up floating waste, while sludge is pushed to a central hopper in the bottom of the tank to be pumped out.

Water can be further treated using filters and UV treatment to remove impurities and contaminants. Activated charcoal is one filtration material, but plants have also had success with coconut fibers, sand, and peat.

Pros and Cons:

  • Pro – It’s simple and doesn’t require fluctuating levels of chemical additives.
  • Pro – It can be twice as fast.
  • Pro – It’s one of the most cost-effective options, especially in areas where people are already stretched thin financially.
  • Pro – It’s better for the environment as no chemicals are being used.
  • Con – Produces more sludge that must then be managed.
  • Con – Lightweight particles may be harder to capture.
  • Con – Clarifier tanks take up more space, which can be hard in areas where there is limited land.

How Does Chemical Clarification Work?

Chemical clarification involves the use of a chemical to cause suspended particles to clump together, which forms larger solids that float to the surface. That makes them easier to remove because they settle faster than small particles. 

With chemical clarification, processes known as coagulation and flocculation take place. The chemical additives, such as caustic soda, lime, iron, aluminum salts, and polymers are mixed in causing the suspended particles to coagulate. As they bind (flocculation) the larger clusters, called flocs, float to the surface for easier removal. This method also has pros and cons.

  • Pro – The floating suspended solids are easily removed, which leads to cleaner water.
  • Pro – A smaller footprint is needed, which is good if your plant has limited space.
  • Pro – It’s better at capturing tiny particles that often get missed in mechanical clarification because they bind together.
  • Con – Costs more than mechanical due to the cost of chemicals, and an increase in incoming wastewater will require quick adjustments to the amount of chemicals used, so costs can increase as workers put in more hours and increase the use of chemicals.
  • Con – It’s a more complex process, which means wastewater treatment plant operators may need extra training.
  • Con – The chemicals can be harmful to the environment, so they must be removed before treated wastewater’s release and carefully handled if there is an accidental spill.
  • Con – The amount of sludge increases, so you have to have a sludge management plan in place.

Which Method Is Best for Your Municipality?

Which is best for your wastewater treatment facility? Consider these five points.

The Characteristics of the Wastewater Your Facility Treats

What are the main qualities and characteristics of the wastewater you treat? Chemical clarification is considered to do a better job of removing contaminants like heavy metals. If you treat a larger volume of industrial wastewater, it’s something to consider.

Your Municipality’s Budgetary Constraints

As is true in most of life, you have to consider the budget. While you might prefer the idea of chemical clarification, consider the costs of both options and the average salaries of people in your municipality. If you drastically increased water and sewer bills, could they afford it or would they be at risk of financial hardship?

The Discharge Standards You Need to Meet

When you are permitted to operate a wastewater treatment plant, the EPA’s permit has discharge standards you must meet. If you fail at that requirement, the fines can be steep. Consider which of the two clarification methods ensures you meet those standards in the most cost-effective manner possible.

The Size of Your Plant and Availability of Additional Land

How much land does your facility have? If you opt for mechanical clarification, the tanks take up space. As new homes are built and businesses come in, new equipment may become necessary to keep up with the increased flow rates. Do you have the space available for new clarifiers? If you don’t have a lot of space, mechanical clarification might not be feasible.

Your Area’s Environmental Concerns

What are some of the concerns already impacting the environment in your area? As you release treated wastewater to rivers, lakes, the ocean, etc., you need to make sure you’re not accidentally discharging water with higher levels of dissolved salts and other chemicals used during clarification.

Finally, you have to consider environmental concerns regarding sludge. When you use chemical clarification, you’ll have more sludge. If you only have one or two landfills in the state and they’re already reaching capacity, you’d need to find another way to dispose of the sludge to avoid straining other city and town services. 

You could consider incinerating it or processing it for fertilizer, but that’s more work, which means more staff, and that can mean higher costs for your district. You have to consider all of that when determining the best option for your community and budgetary constraints.

Lakeside Equipment has been in the water clarification field for close to 100 years. Reach us online or over the phone to discuss your plant’s size, wastewater treatment needs, and your community’s budget. We’re experts in wastewater treatment processes and equipment and can help you find an efficient, cost-effective solution.

Enhancing Environmental Sustainability in Wastewater Treatment with RO-TEC Drum

Since their development, wastewater treatment practices have come a long way, but they also can be incredibly wasteful when it comes to energy consumption and unplanned raw sewage releases. Working on environmentally sustainable practices is essential. The less of a footprint that’s left, the better it is for future generations.

There are three goals to keep in mind when it comes to being environmentally sustainable.

  • Lower energy consumption
  • Lower emissions
  • Increase the use of renewable resources

It’s estimated that about 80% of the world’s municipal wastewater ends up in rivers, lakes, and the ocean each year. It might happen if a sewer pipe breaks, a sewer system and stormwater runoff system are intertwined, or flooding occurs. To prevent that, wastewater treatment facilities need to treat water quickly, correctly, and with as little impact on the environment as possible. Sustainable practices and the right equipment upgrades make a big difference. That’s where the RO-TEC drum comes in.

The Environmental Concerns That Go Hand in Hand With Wastewater Treatment

Wastewater treatment steps consume a lot of energy. While there are ways to recover some of the electricity your plant consumes, such as converting methane to usable fuel or adding solar panels, the addition of equipment that uses less energy is also beneficial.

The Department of Energy estimates that U.S. wastewater treatment plants consume over 30 terawatt-hours of electricity each year, around $2 billion annually. There are over 16,000 public wastewater treatment plants, which means each plant consumes about $125,000 in electricity yearly, and that’s just electricity. 

Add in the heating fuel or gas needed to heat a facility, any cost for air conditioning in labs and offices, and the costs of raw sewage spills from breakdowns, floods, or broken underground pipes following a deep freeze, an earthquake, or age. It’s a strain on resources and finances.

The harder you work to treat wastewater, the more energy is consumed. And that circles back to higher energy consumption and bigger bills. If you use chemicals to sanitize wastewater, there’s the risk of chemical pollution, too, so your employees have to take every possible precaution to ensure chemicals are below maximum levels before treated wastewater is released into a body of water. All of this affects the environment and your plant’s operating costs.

Other concerns for the environment come from the sludge that’s generated as you treat wastewater. The more you can screen from the wastewater in the earliest stages, the quicker it is to treat the wastewater. However, you have to have a plan in place for that sludge, too. 

Some plants incinerate it, which means the emissions from the furnaces must be carefully filtered to limit air pollution. Incineration of waste can increase greenhouse gases if filtration is not carefully monitored. This is why many plants are looking into using the methane their plants produce to use it for energy for heating or cooling their buildings.

Others haul it to landfills where any diseases mix into the decomposing trash and could put wildlife at risk. Not only that but since lined landfills became a requirement in the late-1970s, there hasn’t been enough time to determine their effectiveness. They’re fine for now, but no one knows if those liners will still be doing their job 100 years later.

What Is a RO-TEC Drum?

RO-TEC drums screen incoming wastewater using the flow of the water to begin the rotational movements of the drum screen. Because the water flow moves the drum, it doesn’t consume much electricity, which reduces demand on the grid. 

It’s also self-cleaning, which frees up workers for other important tasks. As the drum rotates, a raised scraper section thoroughly removes particles where they go into the sludge you compost, incinerate, or bring to a landfill. 

When it comes to maintenance, RO-TEC drum screens don’t require a lot of labor. They don’t wear out quickly due to the stainless-steel construction, and they require very little maintenance over time. If they do, the drive is above water level, which makes repairs and maintenance easier to manage.

One of the most common uses for RO-TEC drum screens is when pulling water from a lake or river for water treatment. The sizing of the screen protects fish and other aquatic life from getting drawn into the system. They’re versatile and work well in both water treatment and wastewater treatment.

When screening wastewater, the fine and ultra-fine screens do a better job at cleaning smaller particles, which makes them a good choice for areas where industrial wastewater is a concern. They’re often used for the pre-treatment of industrial wastewater due to their energy efficiency and pre-treating ability.

How Does It Help Boost Environment Sustainability?

RO-TEC drum screens use water flow for movement rather than electricity, which lowers energy consumption. Less energy use helps the environment. If you add renewable energy sources like solar or wind power, it further lowers the impact your facility has on the environment.

As these drum screens capture more particles with the fine or ultra-fine screening, they also clean water better from the start, which speeds up water treatment and gets it ready for other sustainable practices, such as water reuse. With water sources in some areas drying up, reuse of water is an important practice. 

People might be nervous about drinking water that comes from the sewer system. The reality is that treated wastewater that then is treated for potable water sources is just as clean as water that’s drawn from the river, ocean, or lake and turned into drinking water.

Plus, wastewater that passes through a RO-TEC drum screen is going to require fewer chemicals, if your plant uses them. More sludge and particles come out of the wastewater, making it easier to treat further down the line.

The final consideration any wastewater treatment plant board needs to consider is the cost of treating wastewater. As area residents and business owners pay for the wastewater treatment in their municipality, cost control is essential. According to a Statista study, the cost of wastewater treatment can be substantial. In 2021, the five cities with the highest wastewater treatment prices per 1,000 gallons were:

  • Seattle, Washington – $21.65
  • Baltimore, Maryland – $11.40
  • Richmond, Virginia – $10.40
  • Austin, Texas – $10.37
  • Miami, Florida – $9.24

If you consider the estimate that one person produces about 100 gallons of wastewater per day, those treatment costs add up quickly. Every step you take to lower wastewater treatment costs helps the community you serve. Efficient wastewater treatment equipment and processes are the first step. Low-maintenance equipment like a RO-TEC drum screen also helps lower operating costs.

Lakeside Equipment specializes in RO-TEC drum screens and many other components that help make wastewater treatment an efficient, effective process. Reach out online or by phone to learn more.

Springtime Savings: How Flowmaker Mixers and Pumps Lower Energy Costs in Wastewater Treatment

In the U.S., municipal wastewater treatment facilities use up over 30 terawatt-hours of electricity every year. Average costs are over $2 billion. The worst part is that electricity is about 25% to 40% of a plant’s annual operating budget. Lowering energy consumption should be every municipality’s goal. 

The key to lowering energy costs in wastewater treatment is in the equipment. Spring rains can lead to problems with flooding, and any raw sewage release is going to be costly. Flowmaker mixers and pumps will do a lot to help you cut down costs and help area residents and businesses save money.

The Many Benefits of Reduced Energy Consumption

Reducing energy consumption means lower monthly bills. That’s one of the biggest benefits, and it’s one that the people in your district will appreciate. There’s more to it than just reduced electricity bills.

Maintenance Costs Decrease

When you modernize equipment, pay attention to how many pieces of equipment are above the water level. That makes it easier for maintenance workers to address issues, if and when they arise. Less maintenance means lower bills.

Reduced Impact on the Environment

The generation of electricity puts a strain on natural resources and the environment. Some plants use hydroelectricity, which benefits from the natural flow of water, but it also requires the installation of dams and equipment that can harm fish and wildlife. There are ways to lessen the impact, but these issues are still concerns you have to consider.

Older types of electricity production, such as nuclear or coal-powered plants, cause concern. Coal mining is often dangerous and can lead to illness in its workers. A mine collapse is always a risk. Plus, coal mining produces high levels of methane, which increases the risk of explosions.

Sustainable Plant Practices

When you have more efficient equipment, your plant is more sustainable. Wastewater is cleaned in a timely manner, which lowers the risk of raw sewage releases when a system is running. If you add in other beneficial measures like recycling water and recapturing methane produced during the treatment process for energy. 

Flowmaker’s Design and Features

When the goal is efficiency and lowering your plant’s carbon footprint, Flowmaker mixers and pumps are a must for all of the following reasons.

High-Efficiency Mixers:

High-efficiency Flowmaker mixers use a lot less energy by using specific flow patterns to move wastewater around for optimal mixing no matter how large or short the tank. In a sludge tank, they can move the flow effectively enough that nothing builds up in the corners. 

The impellers are also efficient and require less energy to run. Flowmaker mixers can operate so that the mixers work vertically or vertically. A horizontal mixer is going to assist with sedimentation.

Variable Speed Drives:

Variable speed drives are another benefit. When pumps and mixers run at a continuous rate, energy is wasted. You don’t want your system working at the same rate during high-peak hours as you would when people are sleeping and not running water. You waste energy. 

With variable speed drives, the pumps and mixers speed up and slow down as needed. It lessens strain on the equipment and also lowers energy consumption. Use electronic controls and even automation to adjust for changing flow rates. When you do this, you can reduce your energy consumption by as much as 50%.

Automation:

Automation and AI are all part of advancing technology that plays an important role in energy-efficient wastewater treatment processes. When there are sensors that track changes in things like flow rates and sludge, pumps and mixers turn on without human involvement. Automated systems automatically adjust Flowmaker mixers and pumps to account for these changes. This establishes processes that treat water correctly, quickly, and more efficiently than ever before. 

Lightweight Materials

Wastewater can do a lot of damage to components. Flowmaker mixers and pumps are designed to resist corrosion while also being lightweight. Because the propellers are lightweight, less energy is needed to turn them. They’re also going to last longer because they won’t rust or corrode and need replacement before you expect.

Other Considerations Your Treatment Plant Needs to Keep in Mind

The amount of energy you can save using Flowmaker mixers and pumps is dependent on several factors.

Your Wastewater Treatment Plant’s Design and Capacity

The size of your wastewater treatment plant will impact the amount of energy you save. The larger your facility, the greater the savings once you’ve incorporated Flowmaker mixers and pumps. Smaller plants may not see as much in savings, but they still will see some level of discounts on their operating expenses.

The Age of the Current Equipment

Switching older equipment to new technology will deliver cost savings. The older your equipment, the more energy it’s using. You could end up being surprised by how much lower your bills are. Plus, new Flowmaker mixers and pumps are going to do a lot more work, so you might find your treatment processes improve, which leads to faster treatment times and fewer problems with raw sewage releases.

The Type of Wastewater 

Wastewater quality also plays a role. If your district takes in a high percentage of hauled septage, you might have more solids than others. An industrial setting where there are a lot of food processing companies will also have higher levels of fats, oils, and grease. That means the mixers and pumps need to work harder.

Work With a Professional for Optimal Plant Efficiency

When you implement a Flowmaker mixer and pump features, you reduce your wastewater treatment plant’s carbon footprint by reducing the amount of energy your equipment consumes. Keep your system well maintained and enjoy a long-lasting, problem-free system that keeps lowering your electricity bills. In time, your equipment pays for itself from the savings you gain.

The U.S. Department of Energy established the Sustainable Wastewater Infrastructure of the Future SWiFt initiative. SWiFt 2.0 is the second phase that enabled another 100 wastewater treatment facilities to save up to 25% on energy costs using technology like renewable energy and resource recovery. With federal funding available for infrastructure improvements, it’s a good time to look at how to make your plant more efficient for the future.

Lakeside Equipment has other tips available to help you lower your costs while ensuring optimal wastewater treatment processes. Whether you add Flowmaker mixer and pump features or want to learn more about capturing methane to use for heating your building, we have solutions that fit your needs.

How Data & Analytics Can Improve Industrial Wastewater Operations

Industrial waste is cleaned before it is sent back to your company’s production lines, a local water source, or allowed to enter city sewers to go for treatment in your local waste district’s water treatment plant. As the wastewater produced in different industries can be full of pollutants, treating the water is important. The food industry may have high levels of ammonia, fat, and coliform bacteria. Power stations can have high levels of heavy metals. Treating water from these industries must be done correctly to prevent harm to people or the environment.

Managers and owners of industrial operations must carefully monitor and analyze each aspect of wastewater operations. Why? It’s important when it comes to your company’s bottom line. You need to make sure wastewater is treated effectively. You don’t want to risk releasing untreated overflow or water that doesn’t meet current guidelines for some reason. Fines for the release of untreated or poorly treated water can be costly both in terms of money and in damage to your company’s reputation. You also need to make sure you’re not wasting money on inefficient operations and excessive maintenance.

Optimizing industrial wastewater treatment is best done by paying attention to the data your systems collect. Use your operational data to look for trends and patterns in all stages of the wastewater treatment process. If you have updated wastewater equipment, it’s easy to capture data and analyze it. From there, you can predict trends, optimize your processes, and get the best practices in place for efficiency and cost-effectiveness.

What Can You Learn From Data Collection and Wastewater Analytics?

What can you learn as you analyze your data? There’s a lot to be learned. An efficient wastewater treatment plant is one that handles the highs and lows, doesn’t require a lot of maintenance and repairs, and provides real-time reports to ensure water meets standards before it’s recycled or returned to a body of water. Through predictive analysis, you should be able to get a better understanding of these five areas.

First, you’re able to see what equipment is not operating as well as it can. If you have machines that are often down for maintenance, it’s costing you money. It’s impacting your wastewater treatment processes. You’ve collected data and find that one piece of equipment struggles to keep up with flow rates. Upgrading may be what it takes to have a more productive wastewater treatment system.

Second, you can track energy usage and flow rates. There may be specific times of day that wastewater rates slow down and other times when they peak. If pumps are operating at the same speed during all of these changes, it’s wasting energy. You can cut energy costs by creating systems that better accommodate the highs and lows.

Third, you’ll see where chemicals are used and if they’re being overused or not used enough. This helps keep your chemical costs to a minimum while also meeting the requirements for the water quality being released to a body of water or reused.

Fourth, you can look at the wastewater you do have and see if there are better ways to reuse it or clean it for release into the environment. Recycling wastewater is one of the best ways to keep costs down. If you could reuse water several times, you’re saving money on water bills. You don’t want dirty water impacting production. Data and analytics help you find the right balance.

Fifth, the other benefit to analytics in wastewater treatment has to do with your equipment. Say you’re seeing data that shows one pump is often breaking down and needing maintenance. You can see how much extra time and money is being spent on repairs. You’ll know if the equipment is still worth keeping or if it’s time to replace it.

How Do You Collect the Data You Need?

Of course, there are hurdles companies face when collecting the information. If even one piece of equipment isn’t connected and communicating with the others, data will be missing. That makes it hard to get a complete picture of the treatment process and quality. Data management tools that connect everything become essential. You may need to invest in additional training so that you and your employees understand what the data means and how to use it to your advantage.

You’re probably already taking the first big step in collecting data at each key point of your water treatment measures. If you have a SCADA system like many industrial settings, you have access to important data. You’re seeing the flow rates as water comes into the screens and grit collectors. You get measurements of the pollutants in the water that’s being treated. Before it’s released, you can see the numbers and make sure they meet federal and state standards. Pair the SCADA system with modern control systems and you have all of the information you need to start analyzing your plants’ processes.

A Sharp Biological Nutrient Removal (SharpBNR) control system helps you monitor your system and adjust aeration as needed to balance the oxygen levels in the wastewater as it’s treated. The computerized control system continually monitors the system status and makes adjustments. Alarms go off if there are problems beyond the system’s scope.

SharpBNR can be partnered with your plant’s SCADA system. Within a SCADA system, you have sensors taking readings at different pieces of wastewater equipment. Readings typically include measurements for flow rates, suspended solids, pump speeds, and Dissolved Oxygen. Those readings are shown on a screen for supervisors and operators. Each screen, grit pump, basin, etc. shows yesterday’s flow and today’s flow. That data can be analyzed to look for unusual changes and peak hours.

As your system begins to analyze the numbers, it learns the necessary adjustments to effectively manage each component. You can also add motor starters and Variable Frequency Drives with the SharpBNR for optimal management. As this information is available from any authorized and connected computer terminal, you can monitor readings from your office and get alerts wherever you happen to be at that moment.

What does that mean? The system is going to be more reliable than it has been because the computer can monitor several components at the same time. Instead of having workers in different areas communicating what they’re seeing, the computer has all of the information in real-time. Adjustments are made by the computer, which continues monitoring the changes and making small adjustments until everything is running smoothly. That reduces energy costs at the same time.

You do need to keep the sensors clean so that the data that’s returned is accurate. While your maintenance team may not be doing as much on repairs, remember they’ll be beneficial at cleaning and calibrating older sensors. This ensures you have accurate information to use as you analyze your industry’s water treatment processes.

SCADA systems are great at real-time tracking and giving warnings of problems as they come up, the systems don’t do as well at predicting future problems weeks or months in advance. Smart analytics fills this gap. Analyzing the data carefully is one way to predict machines or components that are reaching their end-of-life stages.

How modern is your equipment? Would upgrading help you? If your older wastewater equipment lacks some of today’s computerized controls, it can turn data and predictive analytics into a time-consuming task. Talk to Lakeside Equipment about your current set up and learn ways to make your industrial wastewater operations more cost-effective and efficient.

Lakeside Raptor® FalconRake® Bar Screen vs. Duperon FlexRake

Wastewater contains organic materials, but inorganic and organic solids also make their way into sewer and septic systems. How do these items get into the wastewater? It depends on the setting. Homeowners with a septic system may not realize the damage that’s caused by flushing tampon applicators or using too much toilet paper. Children may flush toys, coins, or marbles down the toilet and never tell their parents. In a city setting, items like candy wrappers or water bottles may blow into the street on recycling days and end up in storm drains.

When items like children’s small toys, plastic wrappers, and other personal products get flushed or go down a drain, it’s a problem. Whether it’s intentional or not, plastics, glass, and metal items do not break down. Items like paper towels, cigarette butts, and diapers may break down, but they do so slowly. If they’re not removed in the early stages of water treatment, it can block pipes and damage water treatment equipment. The screening process is an essential first step in any water treatment plant.

Wastewater treatment plants have screens to capture these items before they make it into grit removal systems, clarifiers, aerators, etc. Screens are also helpful in industrial settings like paper mills with wood pulp, wineries where the grape skins and pulp need to be removed before the yeast is added, or breweries where grains and hops need removal before yeast is added for the fermentation process.

Who removes the items from the screens that are getting blocked by these solids? That’s where a mechanical rake comes in. Rakes continually move across a screen to remove the items that are trapped. There are different types of rakes. One of the most efficient is the Lakeside Raptor® FalconRake® Bar Screen. How does this system work, and how does it compare to the Duperon FlexRake?

How a Bar Screen Works?

A bar screen is a vertical screening system with multiple rakes. Those rakes are on a link system that continually moves them around the vertical screen. The rakes are spaced evenly and continually rotate around the screen and tank floor. The screen captures items like plastics, sticks, logs, rocks, glass, etc. and the rakes scoop them up as it passes under the bottom of the screen. They travel up the back and are dropped into a discharge chute as the rakes pass back over the top of the bar screen. From there, items can be washed and recycled or composted, and the rakes continue in another circle to repeat the process.

When you’re looking at bar screens. There are a few things to keep in mind. First, look for construction that prevents corrosion. Stainless steel is the best. After that, you want to look at the placement of bearings, bushings, guides, and sprockets. If they’re underwater, repairs may be more common and difficult to manage. Efficiency and headroom are other factors to consider.

The Pros and Cons of the Duperon FlexRake

The Duperon FlexRake is engineered specifically to meet your demands in many of the same ways the Raptor® FalconRake®  Bar Screen does. The link system can hold up to a total of 60,000 pounds, which is impressive. The links are self-lubricating, so the maintenance is minimal. Gear motors are also sealed to help prevent excessive wear. Bearings, bushings, guides, and sprockets are in higher positions to also reduce the risk of jamming, which can lead to excessive maintenance or repair. It’s also designed to avoid jams when the debris is larger than usual. If something larger goes through the screen rake, you do not have to shut it down and have someone manually remove it.

The bar screen is cleaned automatically. That makes it possible to run it 24 hours a day without having a person to operate it. It’s installed in a vertical or almost vertical position. The motor is low RPM and energy-efficient.

There are several models available. Some are better for industrial settings like food processing plants and breweries, others are ideal for wastewater plants. To find the right screen rake, you need to look at the bar opening (as small as 1/5th of an inch up to just over an inch). Look at the installation angle, too.

How Does the Lakeside Raptor® FalconRake® Bar Screen Compare?

How does the Lakeside Raptor® FalconRake® Bar Screen compare? Much of it, including the chain link system, is crafted from stainless steel, and you get a choice. You can choose 304 stainless steel or 316. Both provide protection from corrosion, but 316 has more nickel and offers more protection in water that is chlorinated or contains more chlorides. If you treat water that has high chloride levels, consider 316 for the best protection from corrosion.

The drive system is low horsepower and incredibly efficient. Lower electricity costs in your municipality by choosing this bar screen. Variable speeds ensure comprehensive cleaning of the screen. The rake is stainless steel, and the ultra-high-molecular-weight polyethylene scraper is also durable and long-lasting. Teeth on the rake fit into the screening for optimal removal. If you’re worried about possible damage happening, don’t worry about it with this model. The bearings, bushings, guides, and sprockets are located near the top to reduce repairs from jams. It’s very unlikely that this bar screen system will need repairs. If it ever does, the drive system is above the water, which makes it much easier to manage.

With over a dozen rakes working together to remove solids, it’s an efficient removal process and headloss is minimal. It’s also adjustable, so you can space the bars to meet your needs. Bar spacing can be as little as ¼th of an inch to much larger sizes. You can also have a cover added to minimize odors. Teardrop-shaped bars are optional and reduce headloss even more. There’s also an optional weather protection system and explosion-proof design to provide peace of mind. Our Lakeside experts will help you determine the appropriate bar screen.

Where should you use the Raptor® FalconRake® Bar Screen? It’s useful in industrial and municipal settings. It’s an ideal screening system in a wastewater treatment plant. You can use it in your pump stations or sewer overflows. If you own a brewery, winery, or food processing plant, it’s good in those settings, too. As the system is customized to match the depth you need, you’re certain to have a screening and rake system that matches your needs.

Pair the Raptor® FalconRake® Bar Screen with a Raptor® Wash Press to clean, compact, and dewater the items that the bar screen removes. The Raptor® Wash Press cleans and presses the trapped materials to reduce the volume and weight of materials that go to the landfill. Lower volume and weight mean less money spent disposing of these items in a landfill. It also helps reduce the amount of waste going to the landfill.

For more than 90 years, Lakeside Equipment has provided solutions for treatment plant designers and engineers. Lakeside’s experience with water purification and water treatment processes cannot be matched. Our engineers will design a system that meets your needs and matches your budget. Our goal is to design a system that is built to last, and should you ever need parts, we have a stellar parts department who are happy to help you.

For more information on how you can achieve Lakeside quality and performance, contact one of our experts at 630-837-5640, email us at sales@lakeside-equipmnet.com or visit our website www.lakeside-equipment.com

Is It Safe to Live Near a Wastewater Treatment Plant?

The odors that come from a wastewater treatment plant aren’t always pleasant. People who live near the plant may start to wonder just how safe it is to have windows open and be breathing those smells all day. What about the fecal matter that’s found in wastewater? Can any of it fall on the surfaces in their home and lead to health issues? When they’re not sure, they come to your plant managers or the district with concerns.

As the plant manager, you’re not sure how to answer. Do they have valid concerns? You can’t dismiss them, so what do you tell them? Here’s what you need to know about the safety of living near a wastewater treatment plant.

What Studies of Air Quality Find?

So, what are the risks? Is your plant releasing bacteria into the atmosphere that makes your community members sick? It’s not likely.

A study was performed in Greece to find out exactly how much pollution impacted residents who lived near a wastewater treatment plant in Patras. The plant’s basic set-up included screens, grit chambers, outdoor primary and secondary settling tanks, outdoor chlorination, and indoor sludge treatment.

The study looked at a 1,640-foot radius and only focused on people who lived in their homes for at least eight hours per day. Once a week for an entire month, samples of the air were taken in six different neighborhoods. The samples were collected in the morning, afternoon, and evening to account for different flow rates coming into the treatment plant. Researchers also collected notes on the temperature, weather conditions, and humidity levels.

Once samples were collected, they were delivered to the processing lab within two hours. Bacteria were treated and allowed to incubate for the next 24 hours. At that point, an expert analyst looked at each to count any colonies that had formed. In bacterial colonies that did form, around 36% were Strep, 29% were Staph, 21% were not identified, 9% were E. coli, and 5% were Enterococcus. Salmonella was not found. All had less than 800 colony-forming units per cubic meter each day.

While the researchers identified airborne contaminants, there were very low concentrations. The two sampling stations that had the highest concentrations were right near the wastewater treatment plant.

This sounds concerning but consider this. An NSF International Public Health and Safety Organization study of germs in the household found Coliform on 3 out of 4 kitchen sponges or dish rags. Coliform was found on almost half of the kitchen sinks in the study. The bacteria were also found on 3 out of 10 counters and 2 out of 10 cutting boards. There were more Coliform colonies on toothbrush holders than there were on bathroom faucet handles.

Bacteria thrive in warm, moist environments. It’s why more bacteria are found in sponges than on a computer keyboard. If a homeowner isn’t constantly sanitizing their sponges, towels, sinks, and bathmats, Coliform is likely already in their home. Bathrooms and kitchens are the most common areas to find bacteria, but it’s not limited to those areas.

Coliform bacteria are not the only bacteria in the home. Pet toys and pet bowls turned out to be a significant source of Staph. Staph was also commonly found on game controllers and remotes. The five germiest items in a household were the kitchen sponge or dishrag, the kitchen sink, the toothbrush holder, pet bowls, and the coffeemaker’s water reservoir.

Plant Upgrades Help Lower Odors and Airborne Contaminants

Go back to the days of Hippocrates for some of the earliest evidence that airborne pollutants can impact health. As early as 460 B.C., Hippocrates notes that men were becoming sick after being outside and breathing smelly air. The smells were likely from composting materials in swamps and ponds during the warmer summer months. That helped spark changes leading to more sanitary ways to dispose of those killed in wars or human waste in camps and communities.

Fast forward dozens of centuries later. Today’s wastewater treatment plants do everything possible to lower the risk of airborne contaminants. Through the use of tank covers, it can help stop hydrogen sulfide and methane from being released into the air. Covers also help keep debris like leaves, dust, and tree pollen from getting into wastewater basins. Are these covers enough, or do additional steps help reduce the risk of airborne contaminants?

You do need to start by determining where the odors come from. Check everything from the pump station to the settling tanks. It could be one specific area or several of them. Your findings help you determine the best solution. If you use open screw pumps to move wastewater from one location to the next, odors will escape. Switching to closed screw pumps stops the smells from releasing.

Some wastewater plant upgrades can help lower the odors of your plant. One of the first to consider is covers. A gas-tight cover stops hydrogen sulfide from entering the environment. Whether you choose aluminum, steel, or fiberglass, you can get retractable covers, floating covers, or flexible geomembranes. How do you choose the best one? Consider these factors.

  • Is it airtight?
  • Can it stand up to environmental factors like temperature changes and weather conditions?
  • Will it make your employees’ jobs more difficult?
  • Does it impact your plant’s safety?
  • How easy is it to get a custom cover that matches your plant’s needs?

These covers become a money-saving step to take as it also keeps algae from growing, and it adds thermal protection in the winter. When you add a gas collection cover, the methane produced during wastewater treatment is captured and can be used to heat and power your plant. That lowers operating costs.

Deodorizing misting systems throughout the plant help neutralize the smells. Another option is to start adding chemicals that react with the compounds that cause the odors. Adding an air purifying system that captures the air, filters it through biofilters or carbon filters is also helpful. Once the air is filtered, it can go out into the atmosphere without leading to unpleasant odors.

While each of these methods will help, a cover is highly effective. You may find you need multiple plans to combat odors. Don’t get discouraged. Weather extremes are changing average annual temperatures and conditions. Smells may be worse in high humidity. A windy day may make the odors travel farther than usual. If you’re having a hard time figuring it out, don’t forget wastewater equipment specialists have the answers you need.

Keeping the people in your wastewater district is one of the best ways to ensure they’re happy. If water costs are low, they’re less likely to complain. Covers are the most cost-effective solution in a wastewater treatment plant. If you don’t have covers on your tanks, you should consider them. Talk to Lakeside Equipment about equipment upgrades that help reduce odors and lower your operating costs.

Also, keep them informed. If there are more odors in the summer, explain why and assure them it’s temporary. Be honest and reassure them you’re doing everything possible to lower the smells that are emitted. Offer free tours, show why the odors occur, and listen for feedback. If you’re still not sure how to help reduce the odors that bother your neighbors, Lakeside Equipment’s specialists help you find the right solutions to incorporate in your wastewater plant design.