Climate Change Brings About a Need to Look at Recycling Water

You’ve probably heard all about Lake Mead in the news. After reaching unheard of depths after years of drought conditions, two bodies and several sunken boats have been discovered in areas that used to be underwater. In areas like California and Arizona, drought conditions are drying up water sources and leading to grave concerns.

Weather patterns are changing. Areas that used to see rainfall or snow are experiencing droughts. Temperatures are going up, leading to unusually long droughts. It’s causing problems around the world, and experts are trying to figure out how to keep water from running out.

Water Shortages Around the World

Every continent is experiencing water shortages. It’s not just something happening in drier, hotter climates. As populations grow and temperatures increase, more water is being used than is being replenished. It takes a slow soaking rain to refill underground water sources like springs or gullies. These headwaters are where a river begins. Heavy rainfall may create quick, flooding water, but it will flow downstream before it helps replenish groundwater.

  • In Tulare County, California, dairy farms are digging their wells deeper and deeper to reach the groundwater. This is affecting neighbors with shallower drilled wells as they’re finding their own wells running dry.
  • Orange County in California found another problem happening. The draw on aquifers was so much that water from the ocean was able to seep in. They feared people would refuse to touch water that originated in a sewage treatment plant, but it was the only solution they could see.
  • In March, Governor Newsom signed an executive order banning well-drilling permits for any agricultural or industrial entity. In his executive order, he pointed out that water storage levels in Central Valley and Santa Clara Valley’s shared water reservoir are over 1 million acre-feet lower than in the prior year.
  • In Monterrey, Mexico, drought conditions led to city officials restricting residential water use to the hours of 4 a.m. to 10 a.m. Those six hours a day are all that the city’s 5.3 million people will be allowed to access. The hope is that this will help protect the city’s water supply.
  • The Californian town of Cambria announced in 2021 that after almost 40 years of depleting the town’s two primary water sources, they were almost out of water. As a level-four (of five) emergency was declared, residents were asked to cut water consumption by almost half. Plus, growth for this community was halted.
  • For some, that meant their applications to build on lots they own that already have water meters in place are being denied. Like many towns, Cambria is trying to figure out how to ensure community members can access water in their homes and businesses.
  • Las Vegas and Los Angeles are touted as an example of what communities can do. The city’s developers planned in advance. For decades, the city’s water system looked at water recycling and storage systems in the mountains as measures to take to prevent shortages. Plus, they request that people avoid outdoor watering to lower the demand on the city’s supplies during a drought.
  • Las Vegas pushes water recycling. Many of the resorts’ pools, fountains, and showers are designed to reuse water to lessen the draw on public water sources. Residential homes in Las Vegas no longer have grass. To prevent the need for watering lawns, artificial turf is used instead.
  • Melbourne, Australia, experienced a severe drought from 1997 to 2009. During part of that time, the city’s population also increased by over a million people. Water use increased by more than 10% in five years. During that time, the city added water recycling plants to try to lessen the demand for public water supplies.

Water recycling is the wave of the future. Some cities and districts are discovering the benefits. It’s time you did, too. It’s the best way to lower the demand on lakes, rivers, ponds, and other bodies of water. Has your industrial or agricultural business or wastewater district considered the benefits of wastewater recycling? It’s time.

What Is Wastewater Recycling?

Wastewater recycling is an act where you clean and reuse water. Any homeowner that has barrels under gutters and uses that rainwater to water vegetable gardens is recycling water. On a grander scale, a water treatment plant can clean, disinfect, and return wastewater to a community’s water supply.

Across the country, municipal water supplies draw from a lake or river, clean the water, and send it to tanks for the public water system. Residents and business owners draw from those tanks every time they flush a toilet, do the laundry, take a shower, wash dishes, etc. The average person uses 101.5 gallons of water per day. It’s a lot of water being taken from water bodies.

Take Boston, Massachusetts, and the city’s population of 696,959. In one day, the average use means more than 70 million gallons of water are used. That’s one day! By the end of a year, more than 25 billion gallons of water are pulled from municipal water sources.

While many water treatment plants clean water coming from septic systems and sewers and return that water to local bodies of water, the water could go right into storage tanks to be used over and over. That reduces the draw of water from the usual sources like lakes and rivers.

How Does Water Recycling Work?

The Orange County Water District’s water recycling plant was developed back in the 1970s. Today, it generates about 35 million gallons of drinking water each day but can produce as much as 100 gallons. It’s slated to undergo an expansion in 2023, enabling the system to create 130 million gallons of public water each day.

How does it work? Wastewater goes from the wastewater treatment plant to the Groundwater Replenishment System (GWRS). There it goes through five steps.

  1. Pre-Purification

After going through screening, grit chambers, filters, activated sludge, clarifiers, and final disinfection, the treated wastewater is pumped to the GWRS division. The wastewater is tested to ensure it meets the requirements after leaving the wastewater treatment plant.

  1. Microfiltration

As long as the treated wastewater meets the requirements, the water goes through microfiltration. Water passes through very thin straw-like fibers through tiny holes. Those holes capture any bacteria, viruses, protozoa, and microscopic solids.

  1. Reverse Osmosis

Once the water passes through the microfiltration step, it goes into reverse osmosis membranes to remove any pharmaceuticals and dissolved chemicals. After this process, the water is cleaned to a point that it’s similar to distilled water. To stabilize it, minerals must be added back in.

  1. UV Lights

Hydrogen peroxide and UV lights are the final step in disinfecting and killing off any remaining organics that got through the other stages.

  1. Water Delivery

Now that the water is completely clean and safe for drinking, it’s pumped into injection wells to prevent saltwater seepage and the rest recharges the basins. It filters through the sand and gravel to replenish the groundwater basins where public water is drawn from.

The wave of the future will be recycling water like Orange County is doing. Reusing water that’s consumed is key. Is your district considering taking this step? Reach out to Lakeside Equipment to learn more about the right pumps and biological treatment systems needed to replenish city water supplies with treated wastewater.

Understanding the Three Types of Wastewater – Domestic, Industrial, and Stormwater

In broad terms, wastewater is water that’s been used in some way. It could be water that’s built up in clouds and is now coming down as rain or snow. It’s water that an industrial plant uses to wash food items, rapidly cool down extruded items, or to make items like paper. You also have domestic wastewater that comes from homes.

It’s estimated that 48% of wastewater today isn’t treated before it’s returned to a lake, stream, river, pond, ocean, etc. In districts with wastewater treatment plants, all it takes is one piece of broken equipment to create chaos that leads to the release of untreated wastewater. The importance of properly treating wastewater is critical, especially as many areas experience droughts of unbelievable levels.

Untreated wastewater is part of the problem today. There’s also a problem with water consumption. People need to start weighing their water usage and how to make sure the nation doesn’t run out in future generations.

What can a district do to ensure wastewater, no matter what kind, is properly treated? How do you recycle wastewater to help lower the draw on the nation’s water supplies? To better understand this, take a close look at the three types of wastewater.

Domestic Wastewater

Every day, a person within a home uses an average of 82 gallons of water in some way. It’s estimated that more than twice that is also wasted through water leaks or wasteful habits. Doing the laundry, flushing a toilet, washing your hands, and washing a pet all create stormwater. These are all examples of domestic wastewater.

Domestic water enters sewers from pipes that run from your home to the sewer lines. From there, it continues traveling through the sewer system to a wastewater treatment plant.

More rural areas have septic tanks and septic systems. Solid waste materials like toilet paper, small food particles, and feces sink to the bottom of the septic tank. Liquids travel through an effluent filter and piping to the leach field where it slowly trickles through sand and bedrock to clean it before it returns to the groundwater. The solids in the tank get pumped out every few years, depending on how many people live in the home. They’re transported by septage hauler to a wastewater treatment plant.

Water conversation at this level helps preserve excessive water waste. Simple lifestyle changes can make a difference. Such as:

  • Flushing a toilet less frequently.
  • Turning off the water while you brush your teeth or lather your hands.
  • Wearing the same pants several times if they’re not stained or dirty.
  • Saving water that’s been used to steam vegetables to make vegetable broth.
  • Waiting until a dishwasher is full to run it.
  • Taking one shower a day instead of two or three.
  • Placing rain barrels under gutters and using that to water gardens and lawns.
  • Planting grass and crops that are drought-tolerant.

All of these measures will make a difference, but it’s not just for people producing domestic wastewater to resolve. Steps need to be taken to prevent waste and pollution with all three types of wastewater.

Industrial Wastewater

Industrial wastewater is the wastewater generated by manufacturing plants, food processing plants, oil and gas companies, mines, breweries, paper mills, and many other commercial businesses.

In areas where droughts are common, some companies must establish their own on-site wastewater treatment plants to recycle as much water as they can. Hotels in Las Vegas are one example, they must reuse water instead of drawing on public water supplies to do things like add water to their pools. The same is true of companies like car washes where a lot of water is used.

Many companies that generate industrial wastewater must pre-treat the water before releasing it into the sewer system. If they don’t, they put a strain on systems by sending excessive amounts of heavy metals, chemicals, bacteria, etc. to the wastewater treatment plant for processing. It’s a costly process, so pre-treatment ensures the company responsible for generating the industrial wastewater does its part to help clean the water.

Stormwater

The final type of wastewater is one that people don’t often think of as being wastewater. When there is a heavy storm, rain falls in the streets and goes into storm drains. This is known as stormwater or storm runoff. From there, it may go to a wastewater treatment plant, but that’s not as common as having the stormwater runoff go directly to a channel that leads to a body of water.

As stormwater runoff is not always treated, things that the stormwater picks up along the way end up in a freshwater source nearby. It might be automotive fluids that puddled up from a leak in a car’s engine. Salt that’s spread on the roads in the winter, liquid manure, and animal waste are all things that can end up in stormwater.

Stormwater runoff is an area of concern, as too much rain or snowmelt at once can overload an older system and lead to sewage and stormwater mixing and ending up going to area water sources without treatment, which is a health hazard.

Many cities are starting to realize the importance of finding a way to manage stormwater. Green infrastructure plans help filter out some of the waste from stormwater by adding green roofs, rain gardens, and rain barrels to help capture some of the rain that falls or snow that melts. Plants are able to pre-filter the storm runoff before it reaches bodies of water.

Making Wastewater Treatment More Efficient and Effective

Proper wastewater treatment ensures that wastewater is cleaned of most contaminants before it returns to a lake, river, pond, etc. Not everything is removed through wastewater treatment. Researchers are finding levels of antidepressants and other prescription medications in aquatic animals. Because of this, research is constantly taking place to find better filtration methods and more effective treatment measures.

Another aspect is water reuse. Across the country, water shortages are becoming more and more apparent. Lake Mead is an example of this. The lake is at the lowest level in history, and severe water conservation efforts are underway or there will be shortages. Water reuse is essential. People may not like the idea of drinking water that came from a toilet or washing machine, but it’s important.

Wastewater districts need to make sure the public knows that recycled water is just as safe as the water they currently use. Sometimes, it’s even cleaner.

Consider adding a water treatment plant to your existing wastewater treatment plant. Instead of sending the treated wastewater to a body of water, it goes to a water treatment plant for further processing before it goes to the public water supply for use. Water reclamation has to happen, and your district should look into the upgrades needed. With government grants available for upgrading the infrastructure, it’s a great time to learn more.

Lakeside Equipment specializes in water treatment equipment and facilities. Give us a call or reach out to us via email to learn more about what your wastewater district plant would need to do to upgrade your system to be efficient and cost-effective while creating a clean water source for area residents and businesses to draw on.

How Can You Prevent Overflow Situations When It Floods?

During Hurricane Ian, upwards of 20 inches of rain fell in southwestern Florida. Bradenton is one of many water treatment plants that had no choice but to release millions of gallons of wastewater into a nearby river. A spill of 7.2 million gallons of sewer water leaked into the Indian River Lagoon. Miami saw thousands of gallons of sewage overflow into storm drains. These are just two of a long list of issues, and it’s not a problem Florida officials are seeing for the first time.

During two hurricanes in 2016, 250 million gallons of raw sewage spilled into the environment. Millions of gallons leaked during Hurricane Irma in 2017. One area that saw no issues was the Florida Keys, where $1 billion in upgrades led to sealed pipes and an advanced wastewater treatment system that removes nitrogen and releases the treated water over 3,000 feet below sea level.

Florida isn’t the only state experiencing raw sewage spills during flooding rains. Back in January, 8.5 million gallons of sewage spilled into a Los Angeles waterway. Wisconsin Rapids saw about 165,000 gallons overflow into the Wisconsin River.

These sewage spills are public health hazards. The raw sewage is rife with pathogens like E. coli, campylobacter, and salmonella. Nitrogen in the waste can lead to algae blooms in the rivers, lakes, and oceans.  When there are flooding rains, overflow situations are possible. How can you prevent them?

What Is Your Current Set-Up?

Combined sewer overflow is a system where stormwater runoff, sewage, and industrial wastewater all flow in one pipe to one wastewater treatment plant. If stormwater runoff increases in heavy rainfall or snowmelt, the excess water can become a problem for the treatment plant. Suddenly, there’s more water coming in than the equipment can handle and the plant has to release untreated wastewater to the lake or river.

Many cities and districts have moved away from this system, but approximately 700 of these systems still exist according to the EPA. They’re all bound to the 1994 CSO Control Policy and the Clean Water Act. If you’re in a district where this is the design, it’s time to consider a change.

Sanitary sewer systems are more common. Sewer and industrial wastewater travel to the wastewater treatment plant while storm runoff travels to storm drains and out to bodies of water from there. Storm runoff isn’t treated, so it’s important that area residents don’t pour chemicals down storm drains. 

Introducing the Integrated Planning Elements

A few years ago, Congress enacted the Water Infrastructure Improvement Act. The idea was to offer ways for districts to voluntarily begin to make changes in stormwater and wastewater planning in order to meet standards set forth in the Clean Water Act. There are six elements to the framework of the Water Infrastructure Improvement Act.

  1. Brainstorm and plan out the requirements and drivers.
  2. Map out the existing infrastructure in a municipality’s stormwater and wastewater systems.
  3. Connect with project stakeholders.
  4. Brainstorm, evaluate, and select alternative plans.
  5. Analyze the performance.
  6. Formally adopt the necessary changes.

Just over two dozen districts started to integrate measures or developed and completed their changes. As more money is being earmarked for infrastructure improvements, it’s time to look at the steps your wastewater and stormwater district can take to lower the chances of a sewage spill during flooding.

Look at Your Capacity and Add Flood-Proofing Measures

Stop and look at the current capacity of your wastewater treatment facility. If heavy rainfall is causing system overflows, it’s time to look at upgrades, repairs, and adding to the existing capacity. Not only can that increased capacity help in times of heavy rain, but it also helps with population growth in the years to come.

In addition, if your facility is in a low-lying area, it’s time to look at flood-proofing measures that help protect tanks, ponds, and other equipment. Flood barriers are ideal for keeping flood water away, and servers and network hubs need to be on higher ground. Submersible pumps will help protect your equipment. Use the EPA’s flood planning guide to determine if you could be impacted by a 100-year flood and get helpful tips on where you should focus your upgrades and changes.

Upgrade Your Older Equipment 

If you have older wastewater treatment equipment, it’s time to address the benefits of upgrading to newer, more efficient waterproof or submersible pumps and motors. Ideally, look for equipment that has adjustable motors that will work harder when flow rates increase and slow down when it decreases.

An addition of a bar screen may be enough to help with combined sewer overflows. If back-ups occur regularly as trash, sticks, branches, leaves, and other materials build up on screens, it’s time to look at better screening. With trash and other debris cleared and moved to a landfill, it allows water to flow correctly, which prevents overflows and costly fines.

If you don’t already have Supervisory Control and Data Acquisition (SCADA) technology, you need it. Computers can monitor how well the system is working and identify problems before they start. With flowmeters, facility personnel can spot overflows, chemical imbalances, and leaks and take immediate action. 

Plus, SCADA can help you automate your facility. You’ll still need operators, but you’ll have 24/7 monitoring to avoid overflows. Being able to analyze real-time data and get timely alerts is important when it comes to flood management and avoidance of fines and EPA violations.

Careful City Design Is Equally Important

A stormwater system and wastewater treatment plan should make upgrades to help prevent overflow situations, but it also helps if city planners look at environmentally-friendly changes that help with rainwater. 

Permeable surfaces are key to this process. Instead of paved roads, concrete sidewalks, and other impermeable structures that allow water to collect and flow like a river, add green areas where the water can soak in. Rain gardens, porous paving materials, and green roofs also help. 

Bioswales are also gaining popularity. These sunken areas along roads are filled with greenery and piping that helps complete the primary filtering before distributing the water that’s in excess of what the plants use.

Instead of building right on river banks, setting buildings farther away to allow for the rise of water in a floodplain is also important. 

Get Expert Advice from Lakeside Equipment

Work with an expert in water treatment designs, repairs, and installations. It’s important that your system be carefully designed to meet your growing community’s needs and changing weather patterns. Every measure you take to prepare your facility for flooding or heavy rain is important.

Lakeside Equipment specializes in water treatment and has been in business for nearly a century. Talk to us about your current treatment plant’s equipment and where you feel it’s falling short. We’ll help you design a cost-effective system that’s prepared for floods and population growth.

What Are the Stages of Wastewater Treatment

pump sucking water from treatment plant

When wastewater leaves a business or home, it enters the sewer pipes or heads to a septic tank and leach field. What happens from there? What are the stages of wastewater treatment and what can you do to have an efficient, effective wastewater treatment plant as you consider each of these stages?

Stage 1: Screening

Before anything else happens, wastewater and hauled septage have to go through screening. This is where the things that shouldn’t ever be flushed or allowed into sewer lines are filtered and removed. This includes items like a child’s toy, a plastic tampon application, rags, plastic wrappers, grease clumps, and pieces of wood. They are raked from the filters, rinsed to remove any waste products, and pressed to get out as much water as possible.

Items removed in the screening process go to landfills. The remaining wastewater moves to the second stage of wastewater treatment.

Stage 2: Grit Removal

Grit removal is a process where fine, gritty particles are removed from the wastewater. It includes particles like coffee grounds, sand, and gravel. They are removed by a pump after the grit settles on the floor of a grit chamber. From there, it gets hauled to a landfill. The remaining wastewater goes to clarifiers.

Stage 3: Primary Settling/Clarifying

At this point, the wastewater is rid of grit and trash. It sits in a circular tank to settle. Sludge sinks to the bottom of the tank, and fats float and collect on the surface. The wastewater between the two layers leaves the tank.

The fat layer is skimmed periodically from the surface, while the sludge is pumped out. Chemicals are introduced to start breaking down the phosphorus. 

Stage 4: Aeration

Aeration is the key step in processing wastewater. Pumps add air to the wastewater to help aerate it while microorganisms begin to digest the remaining sludge and pollutants and create a mixture of water, nitrogen, and cell tissue. 

Stage 4B: Activated Sludge

The remaining sludge goes through treatments of its own. To start, it is skimmed from the aeration tanks. Water is removed from the solids and returned to the start of the wastewater treatment process.

The thickened sludge mixes with primary sludge and is pumped to a primary digester. There, it’s heated and allowed to compost for over a month using anaerobic bacteria to help break it down. Pollutants from the sludge are digested by the bacteria and converted to carbon dioxide and methane gas, and water. 

After the bacteria has done its job, the remaining sludge is moved to a gravity belt where it’s mixed with a polymer that helps absorb all of the water. Water drains into a basin where it has to be slowly mixed back to the beginning of the wastewater treatment process because of its high ammonia content. Too much all at once creates problems.

The sludge goes to storage tanks where it sits for upwards of a year before going into tanker trucks to be spread at approved sites, such as fields and forest lands, to provide nutrients the soil needs for optimal plant health.

Stage 5: Secondary Settling/Clarifying

Wastewater is pumped to secondary clarifiers. At this point, the wastewater is 90% of the way to the finished product. Activated sludge is continually pumped out as it settles and goes back through Stage 4B.

Stage 6: Filtration

Now that the wastewater is cleaned. It’s filtered through some type of media. Different wastewater treatment plants rely on different types of filters. Some may use activated carbon filtration, some might rely on coconut fibers, and some use polyester. If any particles are on the filter, they’re washed and returned to Stage 1.

Stage 7: Disinfection

The filtered wastewater is now mixed with chemicals to kill any remaining bacteria or exposed to UV disinfection. Water is tested throughout the process to make sure it meets the required levels before it’s released to the area river, lake, pond, or water treatment plant for reuse.

Stage 8: Aeration

Some wastewater districts add one more step to aerate the cleaned wastewater to make sure it has the correct oxygen levels. Every wastewater treatment plan has requirements listed in its permit. Failure to complete the steps needed to bring the water quality to those levels can lead to hefty fines.

Consider Your Options for Hauled Septage

When a wastewater district also accepts septage from residences and businesses that are not on a sewer line, a septage acceptance plant is necessary. This is the station where trucks will pull up and pump out their tanks with the septage they’ve pumped out of septic tanks. 

Hauled septage is raked to remove any trash or grease clumps. The remaining wastewater and sludge get pumped to the screening stage of wastewater treatment. As septage haulers collect money from businesses and consumers and pay the wastewater district from those proceeds, you’ll want to have a computer system set up to track who is bringing in the septage, how much they dropped off, and bill them accordingly. 

Tips For Improving Effectiveness and Efficiency

You have to have a wastewater treatment plant that effectively cleans water in the most efficient manner possible. How do you ensure you’re cleaning the water effectively, avoiding raw sewage releases, and keeping costs down for the members of your wastewater district?

  1. Automation Eases Guesswork

Do you struggle to keep up with the flow rates at your facility? Do you have some days where your employees struggle with higher flow rates than estimated, so they have to constantly speed up or slow down pumps and motors? Or, do they run the motors at high speeds as a preventative measure, even when it’s unnecessary? It’s not an ideal way to operate your wastewater treatment plan.

If there’s heavy rain and your wastewater treatment plant and stormwater runoff are linked, it’s easy to flood and require raw sewage to be released. It’s not ideal for the environment. It’s also easily addressed by adding automation to your plant.

  1. Upgrade Older Equipment

Some of the easiest changes to your plant that will result in cost-saving measures are to look at the aeration system you use. Older pumps and motors can be upgraded to more energy-efficient models that do the job better while requiring less electricity.

  1. Consider Solar and Wind Power

It’s estimated that all of the municipal wastewater treatment plants in the U.S. use about $2 billion in electricity each year. Upwards of 40% of a plant’s operating costs come from the plant’s electricity consumption.

While it does cost money to establish solar or wind power systems at your plant, the savings over time are worthwhile. After a 10-acre solar panel farm was placed near the Moccasin Bend wastewater treatment plant in Tennessee and upgrades were made to some of the plant’s equipment, the plant’s power consumption dropped by $1.4 million per year. 

  1. Heat With Methane

A wastewater treatment plant ends up with methane being produced as part of the process. Why not use that methane gas to heat the plant? You’ll eliminate bills for propane, oil, natural gas, or electric heat during the winter months. 

Lakeside Equipment has decades of experience in wastewater treatment designs and equipment that boost your plant’s efficiency and keep up with changes in the flow rates during unexpected storms. We’ve been around since 1928 and provide you with an experienced engineer to design a system that meets your municipality’s needs and budget. 

From final design to installation and operation, our field engineers ensure your system is optimized to do everything you expect. Talk to our wastewater experts about the SharpBNR control system that reduces electricity costs and boosts your plant’s reliability. You can pair it with a SCADA system for optimal performance throughout your wastewater treatment plant.

How Advances in Wastewater Treatment Are Delivering Cleaner Water

Every advancement that a wastewater treatment plant incorporates helps provide people with cleaner water. If you look back through history, the government didn’t address water pollution until 1948. The Clean Water Act wasn’t established until 1972. At this point, there was finally a law with clear guidelines cities and towns had to follow to prevent polluted water from going back into U.S. bodies of water. It led to construction grants for areas that wanted wastewater treatment plants. It started making our water cleaner.

Since that day, water treatment advancements keep happening. The EPA offers guidelines into the pollutants that water districts must remove and test for. If water treatment hasn’t removed enough of the bacteria, heavy metal, or chemical, the public must be notified and told not to drink the water as it’s not safe and changes must be implemented. Water shouldn’t be released to lakes, rivers, ponds, and streams and if it is authorities must be notified.

Early Wastewater Plans

In the 1850s, London’s Thames River experienced what was known as “The Great Stink of 1858.” At that time, human and animal waste was simply deposited back into the river. During a particularly hot summer, that waste caused the river, which flowed past the Houses of Parliament, to reek and politicians left for their country homes because the smell was too much. They all agreed, however, that a new system needed to be implemented. That led to the creation of London’s first sanitation system and close to 100 miles of sewers.

An ABC system was created that mixed sewer water with alum, blood, clay, magnesium, and other ingredients. This mixture moved from one settling tank to the next before being discharged to a river. The problem was that the mixture only started to clean the water. Remaining solids were treated with sulfuric acid to reduce ammonia and used as fertilizer. This process didn’t work effectively and didn’t address the foul odors of the water and solids.

Meanwhile, scientists in Massachusetts started their own experiments using sand filters to purify sewer water. The tests were successful at removing many water-borne illnesses like typhoid. Additional experiments held back in England found that if the remaining sludge was aerated to remove organics and convert any remaining ammonia to nitrite.

Advancements in Water Treatment Equipment

Those steps led to the process of treating wastewater. Equipment is an important part of the process. Grit removal, screening, and oxidation work together to clean water. Water enters a water treatment plant and screw pumps help move it from one area to the next. Screens remove trash and larger objects that cannot be cleaned, such as tampon applicators or plastic wrappers. Sludge settles and is removed. Remaining fluids are aerated and Biological Nutrient Removal takes place to remove nitrogen and phosphorus. What advancements are helping with cleaner water?

#1 – Solar and Wind Powered Plants

One area where water treatment technologies are seeing important advancements are with sustainability. Sustainable water treatment technologies are helping further protect the environment and water sources. Earth.org states that while Earth’s surface is 3% water, no more than 0.5% of it can be used for drinking water. Many people get their water from underground aquifers, but there’s a danger of those drying up in the next 100 years. Reusing water is critical if we are to prevent water shortages. Reusing water requires effective cleaning, which requires power. Solar can help with effective cleaning that minimizes one’s carbon footprint.

Solar-powered water treatment equipment is a trending way to deliver clean water. If you’re harnessing the power of the sun to power a water treatment plant, it reduces the emissions going into the air. You don’t have the soot and smoke from fossil fuels going into the atmosphere that end up in the rain that falls back to the ground. While a water treatment plant will clean some storm runoff, a good deal of it also ends up in rivers and lakes. The acid rain contains nitrogen oxide and sulfur dioxide, which end up in bodies of water and increase water pollution. In addition to solar-powered water treatment equipment, wind power is also being used to eliminate the need for fossil fuels.

#2 – Water Reuse

Going back to water reuse, major companies are starting to understand the importance of reusing water. Nucor Steel realized how much it could cut its water usage by recycling the water they already use and using stormwater instead of cleaned water. These changes have led to a reduction of the water used and lowered its energy bills, too. Water consumption has declined by over 200 million gallons each year with these changes. Cleaner water is saved for homes, and the company’s water needs for cooling the steel products is met by claiming stormwater run-off and rain collection.

#3 – Improved Filtration

Clay, blood, and alum were some of the first filtration materials used. Sand was next. Clean water can also be filtered with charcoal. Most recently, scientists have been using sand coated in graphite oxide to filter water. Water filtered with the graphite oxide-coated sand is five times cleaner than water filtered through sand. It’s an important tool in removing dangerous substances like mercury. They’ve also found that ground plastic bottles that are coated with cysteine are an effective filter for arsenic.

Algae grow easily in water ponds where UV rays are used to kill bacteria. That algae can be dangerous, so it must be killed and removed with chemicals like chlorine and some kind of filtration. Scientists are working on chemical-free ways to kill the algae. One is to introduce bacteria that thrive on algae and break them down into harmless materials that are easily removed through filtration.

#4 – Low-Maintenance or Maintenance-Free Equipment

There’s also an issue with a crumbling infrastructure. Cities need to look at making sure that water isn’t being lost to sewer system water main breaks. Leaks or defective water treatment equipment must be repaired or replaced to prevent water loss. Newer, modern equipment that is constantly monitored by computers and adjusted as flows increase or decrease helps with this.

Smart technology is common in homes, but it’s also being used in water treatment plants for alerts that notify engineers if there is a leak or problem in the equipment. Faster repairs prevent water loss or the release of contaminated water to lakes, rivers, and other water sources. Newer water treatment technology also reduces the need for maintenance by incorporating bearings that are never submerged below water or improving grit removal to prevent damage from abrasion.

#5 – New Equipment Improves Efficiency

Choosing the right equipment is one of the best ways to embrace cleaning water while minimizing your carbon footprint. Have you looked at upgrading your water treatment plant or business with the latest equipment and sustainable practices? Have you thought about going solar at your water treatment plant?

There is an initial cost, but the savings in terms of energy usage and efficiency make that cost worth it. If you’re spending a lot of money on maintenance or repairs, it’s time to talk about upgrading your water treatment equipment. Lakeside Equipment launched in 1928 and strives to help municipalities come up with viable ways to clean water in responsible, environmentally-friendly ways. Call us to discuss your needs for high-quality, cost-effective water treatment equipment.

Wastewater Treatment Plant Construction

A wastewater treatment plant is only as good as it’s designed to be. If you cut corners and fail to consider growth, demand, and equipment durability, you end up wasting money. If you try to get the system constructed and up and running too quickly, it’s just as likely that costly issues will arise.

The EPA estimates that pre-construction alone can take up almost three years. Construction can take up to five years. The larger the plant, the longer it can take. This is why it’s important to partner with an expert in wastewater treatment plant construction with each step.

Five Steps to a Wastewater Treatment Plant Construction

Any wastewater construction project has five key steps. It starts with initial research and project planning and progresses to getting land and permits, construction, and testing operations. It sounds simple, but each of these steps is complex and must be carefully completed.

#1 – Initial Research

Prior to any wastewater treatment plant project, you need to do your research. You need to look into your available funds through grants, loans, etc. The system you design needs to provide the capacity you need. If your plant will be supporting 35,000 homes and businesses, you have to think about the land that’s currently being developed. Talk to town managers and zoning boards to see what goals have been set when it comes to development.

How many households or businesses will your system be supporting a year, five years, or a decade from now? It’s better to plan larger than needed to avoid having a system that’s at capacity and needs upgrades before you’ve paid off any loans and can comfortably afford upgrades without drastically increasing the fees or taxes those in your wastewater district have to pay.

Your plant will need power. Do you want to have solar panels added to help power the plant? Will you be incorporating boilers that can burn the solid waste that’s removed during water treatment? Burning the leftover solids can slash your heating bills and save money. If you’re being connected to the local power grid, make sure you’ve talked to them about costs and how to run lines from the nearest poles and substation to your new plant.

You also need to install roads. You need to see where the best access points are to main roads and do traffic studies to see if the extra traffic will cause traffic jams. You also have to make sure that trucks hauling waste from homes and businesses with septic systems aren’t going to be overweight.

Finally, look at where there is enough available land for a wastewater treatment plant. You may not be able to build it where you first hoped if there is no land for sale or lease. While looking at availability, you also have to stop and think about the pros and cons of buying the land outright versus leasing it.

#2 – Project Planning

You need to hold meetings with shareholders, government agencies, and owners to discuss a budget. Go over possible delays and issues and figure out the best ways to address problems. If you have a plan in place, an unexpected issue with weather, permits, or illness can quickly be resolved.

While figuring out the budget, you also want to consider how much the people in the district can afford in extra taxes. If you can find ways to save money, it helps them out. They’re less likely to be upset by the cost of a new plant if the impact on their living expenses isn’t great.

What types of wastewater will your plant handle? Will you also be dealing with storm runoff? Is it only going to be piped in from the sewer system or will you have a hauled waste receiving system, too? Maybe you need both? Do you want to pick and choose the equipment that’s installed or would an all-in-one system like a Raptor Complete Plant be better for your needs?

You can take time researching all of the equipment, flow rates, and capacities on your own, but will you understand all of the intricate differences. That’s why it’s better to hire engineers that specialize in wastewater treatment to help you make these decisions.

As you go through all of this, create checklists to follow during the permitting and construction phase. You’ll go over these checklists with the company you hire to help you with the construction and installation of your wastewater treatment plant.

#3 – Permits

You have your plans in place. The budget is set and funds are available. You’ve chosen the company you want, and they’ve lined up engineers and technicians to work with you. Before construction can start, permits must be acquired. Not only do you need building permits from the town or city, but you also have to have permits from the EPA.

The EPA is going to set limits on how much untreated sewage is allowed to be discharged if storm runoff levels are higher than expected. A Pollution Abatement Facility Operator License is needed. Your wastewater treatment plant will need to be classified depending on if it is low flow or high flow.

#4 – Construction

With a new wastewater treatment plant, you’re not just constructing the plant. You’re also creating the roads that lead to your plant, getting utilities connected, and putting in any additional buildings that are needed for storage or administrative functions.

Someone needs to keep the project on schedule. You’ll have engineers working with construction managers to make sure workers stay on track. If there are going to be delays, you’ll need to understand why. Every day of extra labor and delays will eat into your budget. It doesn’t take long before you’re running over the budget and struggling to come up with the extra funds.

#5 – Testing Operations

Once the wastewater treatment plant’s construction is done. You have to run tests to ensure everything is running. You don’t want to open straight up into full capacity before the team has tested to make sure the pumps are working properly and that nothing is leaking. Once the system is up and running, you need to keep testing the cleaned water to make sure it meets requirements. Computerized systems and monitoring can make this easier to manage.

Questions to Ask Your Project Partners

Before you choose a partner to help you plan, choose the right equipment, and get your plant operational, you need to know how to choose the right company. This choice is the most important one you’ll make. How do you know how to find the right company? You need to ask questions and listen carefully to the answers.

Start by asking the company about their experience. Lakeside Equipment began designing, developing, and installing water purification systems in the 1920s. We pride ourselves in creating high-quality systems that match our clients’ budgets. Using the most current CAD programs, we design systems that are meant to exceed expectations that require minimal maintenance in many situations. Field engineers are on-site for installations.

Ask for details about projects the company has worked on. Morgan City, Utah, needed a new wastewater treatment plant to meet the needs of a growing community. The city worried about the current system’s downtime while the new system was readied. They opted to have Lakeside Equipment install a stainless steel H-PAC system, which was oversized to increase the peak flow to exceed the estimated peak flow rate for the next 20 years. Morgan City has since found that maintenance is minimal and the new wastewater treatment plant is exceeding expectations.

Give Lakeside a call. Our specialists are happy to help you plan and construct a wastewater treatment plant that helps you as much as Morgan City’s new system is helping them.

Commercial Applications for Screw Pumps

Open and enclosed screw pumps are used in a variety of settings. They’re often found in wastewater treatment plants where they move sludge and fluids that travel in through sewer lines or from hauled septage. Screw pumps are also helpful in commercial applications, though people don’t always stop to think of the benefits of screw pumps in a commercial setting. Here are five commercial applications for screw pumps.

Beverage Industry

The beverage industry is the perfect example of a commercial business that benefits from screw pumps. Breweries, wineries, kombucha, canned/bottled coffee, and other beverage companies can move liquids around without damaging other components in the recipe. As screw pumps require little maintenance and have the option of a Sealed Precision Type “E” bearing assembly that has a sealed bearing that doesn’t require a grease pump or grease lines that could leak over time and contaminate the liquids the screw pump is moving.

For example, beer is made by heating crushed grains (malts) with water. The liquid sits to extract the malt and must be separated. Using a screw pump, the liquids and grains are separated. Grains can go to farms as livestock feed. The remaining liquid is boiled and flavoring hops are added in stages. That mixture cools and yeast must be carefully added. As you add the liquid yeast mixture, a screw pump can control the speed so that it’s evenly mixed. Kombucha and wine are also beverages that are fermented and may benefit from a screw pump.

In winemaking, a screw pump can move fluid. It also moves the denser items like the dregs that include grape skins and seeds. The screw pushes the dregs to a container and the remaining liquid is piped to fermentation vats.

Screw pumps can also be used in a large kombucha plant. The screw pump can help during the step where tea leaves are removed from the tea right before the tea mixed with the culture that grows the SCOBY for fermentation. After the kombucha is moved to a cooling vessel and flowers, herbs, and other flavoring ingredients are added, you could also use a screw pump as it’s moved to kegs for carbonation.

Chemical Plants and Oil Refineries

While centrifugal pumps have been considered the normal option for a chemical plant, screw pumps are ideal. One of the leading reasons is to keep costs down. Screw pumps are designed to handle liquids of different viscosities. A centrifugal pump has to lower the flow rate when pressure increases. That requires constant adjustment to prevent problems. Screw pumps don’t need to make these adjustments, so you’ll save time and money. If you look at some of the flow rates of Lakeside Equipment’s different screw pumps, you’ll see the variation.

  • An open screw pump can handle 90 gallons up to 55,000 gallons per minute.
  • A Type C enclosed screw pump can handle 540 gallons to 35,000 gallons per minute.
  • A Type S enclosed screw pump can handle 90 gallons to 10,000 gallons per minute.

Screw pumps are proving to be the best choice in the oil and gas industry. With more viscous crude oil coming in from countries like Canada, Latin America, and South America, it can take more work to move the oil from reservoirs to oil pipelines. With other styles of pumps, pressure changes required the pumps to be adjusted by the operator to prevent problems. Screw pumps can do this efficiently as they can handle different viscosities and changing pressures with ease. To maximize production, it’s important to work with an expert to help find the best type of screw pump for your refinery.

Food Processing

How could a screw pump be useful in food processing? When food processing requires delicate speeds to prevent over-mixing or adding items too quickly, a screw pump is ideal. A canning company needs to get diced tomatoes into a canning line without pumping the tomatoes so quickly that the tomato pieces get broken down. That’s one area where a screw pump is helpful. It moves the tomato mixture at the right speed to prevent damage to the tomatoes. Steady flow rates keep lines running effectively without much need for maintenance, which boosts productivity.

A cheese manufacturing plant is another example. Milk is trucked to the plant and pumped into the storage tanks before pasteurization. To make the cheese, the curds and whey have to separate. After this happens, whey is pumped away and curds move to the machinery that shapes them into a block or round of cheese. Throughout this process, screw pumps help move liquids or curds to the next step in cheesemaking.

Screw pumps can also help move the whey that’s left behind. Liquid whey is used for animal feed. Whey can be dried into a powder and used as a protein supplement and in baby food. It can be used in bakeries or added to foods like soups and salad dressings. Whey protein powder is a hot commodity, but you need an effective way to pump it to the tanks where it’s stored until it’s needed.

Paper Mills

The pulp and paper industry requires several screw pumps throughout the process. At the very beginning of the process, wood is stripped of its bark and chopped into tiny fragments that are soaked in a mixture of water and chemicals to help digest it. The resulting pulp has to have most of the liquid removed before it moves to bleaching and washing. After washing, a new round of water removal takes place. The pulp goes through a refining process before heading to the paper making presses and drying area. Each new step that requires the separation of liquids benefits from a screw pump.

Eventually, the resulting liquid (liquor) has to be purified. The water left over after paper is made often go into ponds or tanks that use aeration to add oxygen and help with the water treatment process before it returns to bodies of water. The remaining sludge is often sent to incinerators.

Theme Parks

Theme parks across the country rely on screw pumps. Any theme park with a water ride needs a way to get water to the top of a ride or slide where it can plummet down the slide or track to the pool below. A screw pump is effective at moving large amounts of water continually. If you think about water parks where there are log rides in a flume, a screw pump is good at bringing water from the pool back up to the top of the ride over and over. The same is true of water slides and water rides where riders either use an inflatable tube or ride through the slide chute independently. If the water stops flowing, the ride goes wrong. It’s important to have low-maintenance screw pumps moving water non-stop from the bottom to the top.

Lakeside Equipment offers both enclosed and open screw pumps. Our first designs go back to the 1960s and have seen many improvements over the decades. With more than 50 years of expertise, we specialize in clog-free designs. You’ll work with an experienced team to match both your budget and specifications. Trust in us to design a screw pump for your industrial setting.

Screw Pumps for Sludge – How They Work and What You Should Look For

Screw pumps are designed to move liquids, solids, or liquid-solid combinations from one area to another. It’s a simplistic, yet effective, way to push liquids, sludge, grains, and other items along a chute or tube without clogging. Lakeside screw pumps operate at a constant speed, which lowers the chances of the machine needing maintenance or wearing out, making them a cost-effective piece of equipment. While these pumps can handle most everyone, one area where they’re very effective is pumping sludge.

Original Screw Pumps Go Back to Ancient Egypt

How do screw pumps work? One of the original uses of a screw pump was for agriculture and drainage. The screw pump set in water in a low-lying area and the top collection area sat in a higher area. As that screw twisted, water collected in the spiral tube and moved upwards to the collection area at the top. That brought water from a lower area like a river up a bank or slope to the garden beds or fields above.

The Egyptian Screw is believed to be the first screw pump and it was used to move water from the Nile River up the banks and to the villages and fields. While people know screw pumps as Archimedes screw pumps, evidence that Archimedes had any part of the invention is sparse. The pump was around for two centuries before Archimedes’ name is mentioned.

One of the first major uses of the Archimedes pump was in the 1600s when the Dutch used them to move water through dikes and canals. Windmills powered the screw pump bringing water from one section to another.

To understand how they work, imagine a long screw that’s sitting inside a straw. The bottom of that screw sits in a water-filled sink or basin. There’s a second bowl on the counter. The screw is turned at a steady speed. The threads of the screw are designed so that they hold liquid. As the screw turns, water collects in the threads of the screw and the upward movement of the screw pushes the water up the straw. The straw’s walls trap that water from escaping out of the bottom. Eventually, water propels to the top of the straw where it spills into the upper chamber.

What Factors You Should Weigh When Choosing a Screw Pump

A screw pump can move more than water. They can move oil and other viscous liquids like sludge. Sludge is a combination of fluids and solids that forms a thicker material like mud. Most sludge brought to water treatment plants comes from residential and business septic tanks where it’s pumped out and transported through trucks, but it can come from a variety of other sources. In an agricultural setting, screw pumps can move grains from a truck to a storage container. Sludge can also come from food and beverage plants like breweries, wineries, and dairy processors.

This is important when it comes to purchasing a screw pump. You need equipment that matches your intended use. Consider these factors when you’re buying a screw pump for sludge.

Open vs. Closed Screw Pumps

The screw pumps at Lakeside Equipment can be open or closed. This is important to understand as it can make a difference when you finalize your choice.

Open screw pumps sit in a trough that’s made of steel or concrete. The trough is open at the top, which exposes the spiral screw to the environment. The bearings are protected in a sealed sleeve or have a lubricating system that helps prevent wear whether they’re submerged or not. The trough needs to be at an angle of 22 to 40 degrees for the screw pump to work effectively. Given that incline, you do need a substantial amount of space when setting up this type of screw pump.

What are the advantages of an open screw pump? They can handle variable capacities without needing additional controls to manage the variation. They are efficient and don’t clog. There’s no need for pre-screening the sludge you get. Maintenance is low, and you don’t need a wet well to operate them.

What about enclosed screw pumps? There are two types: Type C or Type S. Both of these screw pumps are housed within a tube. A Type C is in a tube that can rotate. Type S’s tube is stationary. Type C is best if you need higher lifts than an open screw pump. It also requires less space as it can be installed to have a maximum incline of 45 degrees. Type S can pivot to keep up with changes in the pumping rate. It requires more space with an incline range of 22 to 40 degrees.

Benefits to enclosed screw pumps include higher efficiency with Type C. If the pump needs replacing, you can simply have the new pump dropped into place, which makes replacement much more affordable. With an open system, concrete and grout are needed. Enclosed screw pumps require no costly grouting or concrete work.

Flow Rate

How quickly do you need sludge moved? How thick is that sludge? Flow rates vary, and you need to make sure that the screw pump you choose can move the sludge as quickly as you need it moved. At the same time, look at the PSI and horsepower to make sure the system is going to work efficiently for you. We can help you with open screw pumps that move as little as 90 gallons a minute to as much as 55,000 gallons a minute. If you need an enclosed screw pump, the Type S is capable of 90 to 10,000 gallons per minute, and Type C handle 540 to 35,000 gallons per minute.

Size

How much room do you have? If you’re in a tight space, not every screw pump will work. When space is limited, the inclination of that screw pump needs to work with the available square footage. Imagine you have a screw pump that If you have plenty of room for the screw pump’s installation, you will have more options.

The open screw pumps manufactured by Lakeside Equipment range in size from 12 inches in diameter all the way to 144 inches. Enclosed screw pumps are available in 12 to 60 inches (Type S) and 24 to 120 inches (Type C). When you talk to our engineers, we’ll help you understand the pros and cons of open vs. closed screw pumps and which best suits your needs.

Durability

You’re spending money on a new or replacement screw pump. You want a system that’s designed to last. You want to get your money’s worth and that means a system that’s not going to require a lot of maintenance and upkeep. The screw pumps at Lakeside are designed to reduce friction that damages the screw pump’s parts. Very little maintenance is required to keep the screw pumps working like new.

Lakeside Equipment’s customer service team and engineers are ready to help you design and purchase the right screw pumps for sludge. Our screw pumps are made in the USA and give you the flexibility of open or closed designs. If you’re looking to replace or upgrade your equipment or are installing a brand new system, give us a call. We have decades of expertise that ensures you get the best system for your money.

How Lakeside’s Rotary Strainer Screens Are Used in Industrial Applications

Lakeside Equipment’s rotary strainer screens are used in far more than just wastewater treatment applications.  One area where Lakeside Equipment’s rotary strainer screens come in very handy is the food and beverage industry. A rotary strainer screen is often thought of as being an essential part of wastewater processing. It’s even more useful in breweries, beverage/coffee plants, and food processing plants. Beyond that, this equipment helps the fuel industry. If you have a liquid that needs to have all particles filtered out before reaching consumers, rotary strainer screens are an important part of the process.

How Rotary Screens Work

Lakeside’s rotary strainer screen is a self-contained unit crafted from stainless steel, which helps prevent corrosion. If you work with an acidic liquid like coffee, wine, kombucha, or hard cider, corrosion prevention is important. It’s designed to be installed on a concrete slab or an elevated structure if you need the equipment to be off the ground. Lakeside Equipment’s engineers can help you come up with the ideal design for your business.

The liquid is pumped in through the back of the rotary strainer where it flows through a rotary screen cylinder. The wire screening removes particles ranging in size from 0.10 inches all the way down to 0.010 inches After the particles are screened, the liquid continues to pipes that travel out through the bottom.

The solid particles that are caught on the screen are then scraped from the screen cylinder using a doctor blade assembly that adjusts using the blade tensioner. The solids are discharged through the chute on the front of the machine. An internal spray bar also helps keep the doctor blade and screening clear. Controls on the machine are automated, which makes it easy for your workers to operate.

What you do next with the solids depends on your food or beverage. Brewers can send spent grains to farms where they become feed for cattle and other farm animals. You could compost the leftover solids. Some may need to go to a landfill. The filtered liquid moves on to the next stage in your business. You might be sending the liquids to a tank, bottling line, or packaging area.

How Will Your Industry Benefit From Rotary Strainer Screens?

Many industries benefit from rotary strainer screens. When you have foods, fuels, or liquids that need to be screened to remove particles or contaminants, a screening system is perfect. Here are examples of different industries where a rotary strainer screen can be extremely useful.

When making beer, water and grains steep in a process called mash conversion, which breaks down starch from the malts into sugar. The malts have to be removed for the next step. A rotary strainer screen is perfect for this step and again when removing the hops before moving the wort into fermentation tanks.

The same is true of other beverages that have to be strained before fermentation, such as hard cider, cold brew coffee that’s canned for sale, and kombucha. Kombucha that has added ginger root, chai spices, or berries can be filtered using a rotary strainer screen. Once the kombucha is filtered, it travels to the bottling line before heading to stores or farmer’s markets.

A winery can use the rotary screening to remove grape skin, flesh, and seeds from the must (liquid pressed from the grapes). That must moves into fermentation tanks where yeast is added and the grape juice ferments. After fermentation ends, wine is moved to barrels for aging. If you produce hard cider, you’ll find the screens remove hops, spices, and other additions that you use for flavoring.

Do you can the cold brew coffee or bottle the iced tea you produce? Once the cold water and coffee grounds or tea have steeped, continue the process by having a rotary strainer screen remove the grounds or tea leaves. The tea or coffee continues to a bottling or canning line, but the filtered materials can go into a compost where it becomes beneficial to gardens.

Some poultry processing plants have found rotary strainer screens to be helpful when it comes to processing. During processing, poultry is continually cleaned using scalding water. That scalder produces the water that sprays poultry during feather removal and removing the innards. The scalding water collects all kinds of debris, which can be removed using a rotary strainer screen. Because the water is kept cleaner, the poultry is cleaner when it goes through inspections and packaging. This can keep costs down as you won’t use as much water as you would having to run poultry through several cycles of cleaning.

To make sugar, sugar cane is shredded and juice is extracted. That juice has to be screened to make sure fibrous material from the sugar cane doesn’t remain in the mixture when it goes to the heaters and surge or flash tanks before moving to evaporators where the remaining crystals are dried and become the sugar people see in stores. Other aspects of a sugar plant, such as making molasses, also use the rotary strainer screen to remove pulp. If you’re in the sugar beet processing industry, the same methods are put to use. In this case, the sugar beet pulp can be used to feed animals like horses.

Fuels like oil or gas cannot have any debris. If items like small metal shavings, dirt, or grit get into the fuel, it can clog lines and cause engine damage. Water is another issue. Chemical additions can help remove water from fuel or oil. Water’s removed and the rotary strainer takes out any particles before the fuel is bottled or moved into storage tanks.

Lakeside Equipment Can Help You

Lakeside Equipment started in 1928 to help towns and cities come up with water purification measures. We’ve expanded around the world. Our equipment is designed to last while helping you process whatever liquids your industry is responsible for producing. Whether you’re a brewery owner or produce oil for the automotive industry, our screening equipment helps you get the job done right every time.

How can Lakeside’s rotary strainer screens fit into your industrial applications? It all depends on your needs. Give us a call and tell us what needs screening. We’ll help you with your options and come up with the right design and installation.

How to Calculate Cost and Financing for a New Wastewater Treatment Plant

Water pollution is a key concern throughout the U.S. While many homes have septic systems installed for wastewater, homes nearer a city are often on sewers. All of the wastewater from pumped out septic systems or sewers goes to a wastewater treatment plant where it’s cleaned to remove bacteria that can spread disease. At that point, it can be returned to public water sources or into holding tanks where it goes back to homes and businesses.

If your municipality needs a new wastewater treatment plant, there are a lot of things you have to consider. Money is one of your primary concerns. If the system is too expensive, the taxpayers in your municipality may be unable to afford the increased taxes. If you cut corners, you risk having an ineffective system that’s prone to breaking down or failing to meet the capacity of wastewater that comes in each day.

You must understand how to calculate the cost and financing for a new wastewater treatment plant. You have to be honest about how much the system will cost, what the federal government will contribute, and why the cost is necessary. Here are the steps to calculating the cost and coming up with financing for a new wastewater treatment system.

Calculate the Size of the System That’s Needed

Several factors go into the size of the water treatment system you need. Is the water treatment system solely processing water that comes in from sewer lines? Or, are you also having a waste receiving system for trucks to bring in the sludge and fluids pumped from residential or business septic tanks? How many homes and businesses are in the district? You need to have an idea of how much wastewater would come into the plant each day.

The Raptor Complete Plant merges grit collection and screening into one unit, which can save room. However, it may not suit your needs. It can handle up to 4 million gallons per day. If the people in your municipality exceed this, you could run into problems. Per the EPA, an average family of four uses around 400 gallons per day. In a city where the popular is well over 10,000 people, this system may not be enough. This is why it’s important to look at your current population and how quickly the population is expanding. If you have businesses that are also adding to the wastewater totals, you need to factor in how much water they’d send into the sewers each day.

Decide What Wastewater Equipment is Needed

Once you have a general idea of what the plant’s capacity needs to be, you need to consider the design and structure. A wastewater treatment system covers three levels: primary, secondary, and advanced treatments. The equipment chosen to handle each level of water treatment must fit in the space you have and do the job at a level that meets federal, state, and local requirements. If the water being released back into the environment still carries pollutants, it can harm the ecosystem, animals, and even humans.

The primary stage involves the removal of suspended solids. Secondary treatment removes pollutants and finishes the removal of suspended solids. The advanced stage removes pollutants like nitrogen and phosphorus that are by-products of the other stages. Some systems only do the first two stages and don’t focus as much on advanced treatments, but changes to laws do occur. It’s better to come up with a comprehensive system that covers every treatment stage rather than omit and have to hurriedly add equipment years later. What type of equipment will you need?

  • Screw Pumps: Water treatment systems have the screw pumps that push water into the water treatment plant and move it from one stage to the next. There are open and closed screw pumps. Open screw pumps do not require much maintenance or a wet well and are very efficient. Enclosed screw pumps can reduce installation costs and offer a drop-in replacement.
  • Screens and Screen Rakes: Screens trap some debris before it moves to other pieces of equipment. Screen rakes clear that debris to ensure wastewater continues to flow. Screens can trap some of the items that don’t biodegrade easily, such as sanitation products, toys that are accidentally flushed by children, and paper towels.
  • Grit Collection: A grit collection system removes grit like sand that can cause abrasion, which damages equipment over time. Grit collection can also boost aeration and oxygen helps break down some bacteria.
  • Clarification and Filtration: Clarification and filtration systems stir the wastewater in order to help separate fluids from solids. Solids settle and can be removed.
  • Biological Treatment: The advanced stage of water filtration is the removal of nutrients like nitrogen and phosphorus that can cause serious problems in bodies of water like a lake. Those nutrients can cause algae blooms that threaten humans, animals, and fish.

Is There Financial Aid Available?

In the 1970s, the Clean Water Act found the federal government chipping grants that covered 75% of the installation cost for a new water treatment plant. The state helped with the rest. That program switched to a revolving loan program in the 1980s that partnered with federal grants of up to 55% This applied to municipal water treatment plants. Private ones or those that were part of an industrial setting were paid for by the business or landowner. Again, this changed in 2014 with the Water Infrastructure Finance and Innovation Act (WIFIA).

Through the WIFIA, eligible wastewater infrastructure projects are eligible for financial assistance through low-interest loans that can be paired with grants to cover the cost of a water treatment plant. WIFIA can cover up to 49% of a project’s cost, and federal assistance can bring the total to 80% of the project’s eligible costs. WIFIA loans are fixed-interest loans that remain the same for the life of the loan, even if some of the money is disbursed later on. The borrower’s credit or the structure of the loan doesn’t lead to higher interest rates. Deferred payments, customized payment schedules, and loan periods of up to 35 years all make the loan easier to manage.

Lakeside Equipment works with you to price, design, and install a new wastewater treatment system. Our team includes engineers, field technicians, and support personnel who help you with each stage of the planning, design, and installation. It’s our goal to set up a system that’s built to last and within your financial goals. It’s time to have a wastewater treatment plant that serves your community’s needs. Call 1-630-837-5640 to talk to our specialists.