All posts by admin-seo

Create Positive Cash Flow from Septage Treatment Systems

A treatment plant frequently can easily add a septage receiving station to create a valuable source of revenue while also providing a needed service to the community and surrounding businesses. A wide range of features are available, but it all starts with a well-designed receiving system, built to handle a variety of hauled waste. The Lakeside Raptor® Septage Acceptance Plant and Raptor® Septage Complete Plant leads the industry for liquid hauled waste receiving systems and can be tailored for your unique needs.

Six Potential Sources of Materials

  • Septage waste, generally consistent and predictable in character.
  • Grease trap waste, typically high in oils and grease from restaurants.
  • Waste activated sludge from other treatment works.
  • Industrial waste, highly variable from one industry to another; these wastes must be tested for toxicity in the process and most likely require pretreatment.
  • Landfill leachate, potentially toxic often requiring additional testing and pretreatment.
  • Portable restroom waste, typically high in ammonia and total nitrogen, and often containing bottles and other large objects.

John Olson, P.E., a regional sales manager with Lakeside Equipment Corporation, described the essential features of septage acceptance stations. “The septage acceptance plant requires a heavy-duty design,” Olson said. “It should be fully automated so haulers can come in, swipe a card, and discharge their load. The decision to accept any hauled material becomes the plant operators’ responsibility. Therefore, the basic design should be customized to their needs.”

For more details on how to leverage your treatment plant to generate revenue for your organization and help to defray maintenance costs, provide needed upgrades and meet compliance requirements, check out the attached article or contact us

Read PDF

Do Wastewater Treatment Plants Remove Pharmaceuticals?

Wastewater treatment plants are there to clean and purify water that arrives through sewer lines, septage haulers, etc. The process removes bacteria, solids, and other impurities until the water is clean enough to go back into the district’s water supply or get released into area bodies of water.

What about pharmaceuticals? Can wastewater treatment plants remove pharmaceuticals before the water returns to public water sources, lakes, streams, and other water sources? Studies show that many drugs end up in treated water even after a normal treatment process.

Wastewater Treatment May Not Remove Everything

In a month’s time, it’s estimated that close to 46% of Americans have taken at least one prescription drug. As you get older, chronic health conditions are more likely. Around 85% of American’s aging adults (60 or older) take medications daily. Adults aren’t alone. It’s found that about 18% of children 12 or younger take at least one prescription medication.

You probably take vitamins, herbal remedies, over-the-counter meds, and/or prescriptions on a daily basis and never stop to think about the impact they have on wastewater. Pharmaceutical plants and the liquid manure from livestock treated with veterinary pharmaceuticals that gets spread on fields aren’t the only cause of these compounds getting into groundwater and streams.

The reality is that the medications people take also find their way into your wastewater. They’re excreted through fecal matter and urine or expired or unneeded pills are flushed down drains or toilets. The wastewater treatment process does what it can to remove them. The problem is that water treatment can’t get all of the drugs out of the water.

A study looked at the wastewater from 50 of the nation’s wastewater treatment plants. Pharmaceuticals were found in all 50 samples. Valsartan (blood pressure medication) had the highest levels, but atenolol (blood pressure), carbamazepine (epilepsy), and metoprolol (heart/beta-blocker) were also found in high levels. While it’s uncertain the levels remaining after the water is cleaned is dangerous to humans, questions arose as to whether the drugs would harm aquatic animals.

In 2020, a University of Cincinnati biologist decided to look at the effects of estrogen (birth control pills) on freshwater fish. As estrogen had been found in streams near wastewater treatment plants, the study looked to see what would happen if native fish were exposed.

In the study, the researchers focused on a native fish that has live births rather than lay eggs. They put them in fresh water that contained a controlled level of estrogen. The fishes’ fertility was affected and fewer babies, especially males, were born to the fish in the study. The shocking thing is that the researchers had used levels of estrogen that were 16 times lower than was found in the streams.

Many people today take antidepressants. How well is wastewater treatment removing antidepressants? Researchers took a look at the tissue of fish found upstream from two wastewater treatment plants in Colorado and Iowa. Fish found upstream showed no signs of antidepressants.

They also collected fish five miles downstream of where the same wastewater treatment plants were releasing treated water. Those fish had noticeable levels of common antidepressants like fluoxetine (Prozac) and sertraline (Xanax). The water samples also tested positive for containing those and bupropion (Wellbutrin), citalopram (Celexa), and venlafaxine (Effexor XR).

What about antibiotics? One of the first was penicillin, but science advanced and many of today’s antibiotics are synthetics like sulfonamides or semi-synthetics like amoxicillin. A study of water within the Great Lakes found that wastewater contained several pharmaceuticals including two antibiotics.

So many medications are being found in water that’s been treated and released to streams, rivers, lakes, and ponds. They’re making their way into the oceans. It’s shown that the drugs can impact fish, mammals, crustaceans, shellfish, and other aquatic creatures.

Federal Regulations on Wastewater Treatment Don’t Cover Pharmaceuticals

The Federal Government maintains a list of chemicals, metals, and other contaminants that must be removed from wastewater before it’s released. Pharmaceuticals are not on that list. While attention is being raised, only four compounds found in pharmaceuticals for human use are even being considered. Three of them are in birth control pills and one is an antibiotic.

This is concerning as a 2007 study tested for 17 different pharmaceuticals in samples taken from 20 different municipal water systems. More than 50% of the water samples tested positive for carbamazepine (anticonvulsant), ibuprofen (NSAID pain reliever), iopromide (contrast agent for scans of the body), meprobamate (tranquilizer), and phenytoin (anticonvulsant).

A second in-depth study went back and found meprobamate and phenytoin in 50% of the samples. While the levels were too low to impact humans, it does raise concerns on how these medications affect fish and other aquatic creatures.

Many wastewater treatment plants are already removing pharmaceuticals, but only a percentage is removed through typical wastewater treatment plans. There’s still a percentage making it into the water. Which leads to the question of what else can be done.

What Steps Help Remove Pharmaceuticals?

How well wastewater treatment removes pharmaceuticals depends on what system a district uses. Activated sludge is one of the more common treatment processes. It uses microorganisms to break down contaminants. It’s not overly effective on pharmaceuticals. Dr. Diana Aga, a chemistry professor, says more pharmaceuticals would be removed if wastewater treatment plants paired activated sludge with granular activated carbon filters.

What steps in water treatment help remove the medications people take? A study looked at the different water treatment steps and whether or not they were partly effective at removing certain medications.

  • Anabolics/Steroids – Reverse osmosis was most effective, but nanofiltration, ozonation, and granular activated carbon was also useful.
  • Antibiotics – Ultrafiltration with powdered activated carbon and reverse osmosis were effective.
  • Carbamazepine (Anticonvulsant) – Ultrafiltration with powdered activated carbon and reverse osmosis were the most effective treatment methods.
  • Diazepam (Sedative) – Reverse osmosis was the most effective with ultrafiltration using powdered activated carbon as a second-best choice.
  • Diclofenac and Ibuprofen (NSAID) – Reverse osmosis and soil aquifer treatments were the best options, and granular activated carbon filters also worked well on
  • Paracetamol (Tylenol) – Ozonation and reverse osmosis were the most effective ways to remove this pain reliever from wastewater.

There is a lot of evidence in filtration being the best way to remove pharmaceuticals. Your wastewater treatment plant can help get pharmaceuticals out of the wastewater that’s treated and released. What is your plant’s design? Have you set up a system that pairs activated sludge with some form of carbon filtration? Maybe it’s time to consider a change that helps keep pharmaceuticals out of the water while also improving your plant’s expenditures.

Is it time to upgrade your wastewater treatment equipment? If you’re looking to clean wastewater effectively and efficiently, modernizing some equipment can help improve your plant’s performance while lowering electricity costs. Your district saves money, which makes everyone happy.

Lakeside Equipment has been a leader in water purification for close to a century. Talk to us about our Learn more about the steps to take for cleaner water and lower energy costs.

Lakeside Equipment SpiraGrit® Vortex Grit Removal System vs. Smith & Loveless Pista Grit Removal System

The wastewater you treat contains more than organic materials. Cinders, gravel, sand, and other heavier solids are also found in wastewater. This grit must be removed if you’re going to prevent clogged piping and abrasive damage to the equipment. If grit isn’t removed, it moves on to aeration tanks and digesters where it impedes the treatment process.

Grit Removal Methods

You have wastewater to clean and grit removal is one of the first steps towards clean water. What are your options? Several methods are available for grit removal. Take a look at the options you’ll encounter when discussing the equipment for your water treatment plant.

Aerated Grit Chambers

In an aerated grit chamber, air is pumped in on one side, which forces incoming wastewater into a spiral flow. As the water flows, the heavier grit falls to the bottom of that tank while lighter organic materials and water continue to the exit. Energy use is higher with an aerated grit chamber. Maintenance costs can also be higher in this type of system.

Detritus Tanks

Detritus tanks are square in design and have to be followed with grit washing to remove the organic materials that get trapped in the grit that’s removed. Augers and rakes are typically used to remove the grit, which means electricity will be running and driving up energy consumption. The rake arm can also agitate the wastewater and stir up some grit and lead to some of it escaping as wastewater flows out. It’s also harder to control flow rates when you use a detritus tank.

Horizontal Flow

Horizontal flow grit chambers are one of the older types you’ll come across. Wastewater enters the horizontal chamber and flows through several small dam-like areas (weirs) that trap grit while the water keeps moving from one area to the next. Grit is removed using scrapers. Flow rates can be harder to control with this system, and headloss is also a concern. The equipment may wear faster, too.

Hydrocyclones

Hydrocyclone systems find wastewater being pumped into the grit chamber and the cyclone force traps the grit and solids on the sides and bottom where they’re removed. The benefit is that both grit and solids are removed at the same time. If you do not screen wastewater before the grit removal process, the hydrocyclone system will run into issues with solids like plastics, rags, and sticks.

Stacked Trays

Some water treatment plants use stacked trays. This system has several trays stacked in a round chamber. Water comes in at the top and circulates over each of these trays. Grit falls to the bottom chamber while the water flows out the other side. Grit is then removed from that lower chamber. While stacked tray systems do not always need electricity, they can be cost-effective, but the depth of the system requires excavation that can be costly. Headloss can also be a concern.

Vortex Systems

Vortex grit removal technology may seem similar, but it’s not. There are differences in technology that you need to consider to ensure you’re getting optimal grit removal and efficiency. One area where vortex grit removal is similar is that wastewater flows into a circular tank. With that tank is a mechanical rotor that creates a vortex that can slow down or speed up depending on flow rates.

Paddles rotate to stabilize the flow velocity. This keeps organic particles suspended within the wastewater while heavier particles of grit sink to the floor. At floor level, the vortex pushes grit to the center where it moves into a grit hopper. From there, it travels to the grit classifier by being pumped, airlifted, or pushed out through an impeller. Grit is washed in the grit classifier to remove any remaining organics. The final step is to move it to trucks, hoppers, or dumpsters where it goes to a disposal facility or landfill.

Vortex systems are popular due to the space that’s needed for installation, the effectiveness, and the overall cost. You should put a vortex grit chamber at the top of your list.

How Effective Are Vortex Grit Chambers?

You’ve narrowed down your choices for vortex grit removal systems. Two of the leading options are the Smith & Loveless Pista Grit Removal System and Lakeside Equipment SpiraGrit® Vortex Grit Removal System. The Smith & Loveless Pista Grit comes in several models that are capable of removing up to 95% of the grit in your wastewater. Pista Grit uses a hydraulic design with a flat chamber floor and propeller that creates the vortex. This propeller doesn’t require a lot of energy, so it can be a cost-effective grit removal system. You choose if you want the system to be baffled or not.

Lakeside Equipment’s SpiraGrit® Vortex Grit Removal System allows you to choose a few things. It’s also an energy-efficient model where it adapts to a range of daily flow rates. Paddles keep the vortex flow moving steadily, so organics float to the top while heavier grit moves downward to the bottom where it falls into a grit hopper and is pumped out using a self-priming pump, airlift pump, or impeller. At that point, you can have the grit move to Lakeside Equipment’s Grit Classifier or the Raptor® Grit Washer as the next step.

Why is the Lakeside SpiraGrit® Vortex Grit Removal System the Ideal Choice?

Lakeside’s SpiraGrit® Vortex Grit Removal System has one of the highest removal efficiencies on the market. It doesn’t matter what the flow rate is, this grit removal system does an exceptional job in a compact size. Head loss rates for the SpiraGrit® Vortex Grit Removal System are also low. You don’t need a lot of space for the SpiraGrit®  Vortex Grit Removal System. It’s designed to be efficient and compact. It’s also designed to separate grit and perform dewatering at the same time, which adds to the efficiency.

If you’re worried about high maintenance costs, don’t worry. There are no submerged bearings. This grit removal system is easy to maintain. You can also have the SpiraGrit® Vortex Grit Removal System crafted from stainless steel to prevent corrosion.

A Headworks Packaged System Covers Everything You Need

With Lakeside’s H-PAC system, you get the SpiraGrit® Vortex Grit Chamber within a full headworks system that’s capable of flow rates of up to 12 million gallons per day. Start with the Raptor® Screen that removes, washes, and dewaters items it captures on the screens. From there, the pre-screened wastewater enters the grit chamber where fine particles of grit are removed. This protects equipment used later in the wastewater treatment process.

For more than 90 years, Lakeside Equipment has provided solutions for treatment plant designers and engineers. Lakeside’s experience with water purification and water treatment processes cannot be matched. Our engineers will design a system that meets your needs and matches your budget. Our goal is to design a system that is built to last, and should you ever need parts, we have a stellar parts department who are happy to help you.

Choose Lakeside’s H-PAC® system with the SpiraGrit® Vortex Grit Chamber for a cost-effective, highly efficient grit removal system. It doesn’t require a lot of space, so you don’t have to worry about having a lot of room available for your grit removal needs. For more information on how you can achieve Lakeside quality and performance, contact one of our experts at 630-837-5640, email us at sales@lakeside-equipmnet.com or visit our website www.lakeside-equipment.com

How to Build an Industrial Sewage Treatment Plant

To build an industrial sewage treatment plant, you first must address what industrial sewage is. It’s wastewater produced in an industrial setting.

Water treatment plants handle different types of wastewater. You have domestic sewage that contains residential toilet water and gray water (water from showers, baths, washing machines, etc.) from houses and apartments. There’s storm sewage that is the rainwater and snowmelt that goes into drains found on the street. Finally, you have industrial sewage, which is the used water from manufacturing plants and factories.

Industrial sewage often contains higher levels of chemicals and pollutants than domestic sewage or storm runoff. It can be the wastewater created while manufacturing batteries, refining petroleum, and making paper in paper mills. This type of wastewater must be handled appropriately to ensure that it’s clean enough to send back to bodies of water or be reused in the businesses that use the water.

Industrial wastewater often contains heavy metals, food waste, inorganic materials like rubber and metal shavings, microplastics, radionuclides, and many toxins. For this reason, you must treat it appropriately. None of those should be returning to drinking water storage tanks, rivers, lakes, etc. The treatment plant must be designed to treat industrial sewage.

Many sewage treatment plants in residential settings are ill-equipped to handle industrial wastewater. It makes it harder to properly treat the water and damages equipment, leading to expensive repairs and downtime. An industrial business owner has to stop and think of the impact on the local wastewater district. As a result, companies consider building their own onsite treatment plants to pretreat water before it goes to the sewers.

The Steps Involved in Industrial Sewage Treatment

As water leaves your machines and buildings, where it goes depends on your setup. You may need to build an onsite industrial sewage treatment plant. If your city wants you to do the first stages of treatment before releasing your wastewater to the sewers, it’s important to understand what equipment is needed.

You might prefer to put in a small wastewater treatment plant on your grounds and reuse the water. That lowers your water bill and helps the environment. Denmark’s Carlsberg Brewery came up with a plan to use at least 90% of the wastewater the brewery uses and to create biogas to produce energy the plant needs. The goal is to reach zero water waste within the decade. It’s an ambitious, respectful goal that starts with an industrial wastewater system that covers these steps.

#1 – Screening

As wastewater enters a wastewater treatment plant, the solids must be removed. If they’re left in, they can clog lines and damage equipment in downstream processes. Don’t let your plant’s efficiency tank because of damage or clogs.

With the use of open screw pumps, you don’t need pre-screening. Move the wastewater into the open screw pumps for screening and grit removal. Once there, additional screw pumps keep the sewage flowing to primary clarification tanks.

Lakeside Equipment’s Raptor equipment screens and washes solids. From there, they are compacted and dewatered. As they’re made from stainless steel, they’re ideal for use in industrial sewage processes. Choose from rotary strainer screens, rake bar screens, rotating drums, micro strainers, and fine screens. This allows you to choose the best screen for the job.

#2 – Primary Clarification and Grit Removal

Once the wastewater is screened, it goes through the primary clarification process. Some plants also need to install grit removal systems. Clarification moves the wastewater and helps remove any additional solids that have settled in the wastewater.

You might choose a peripheral feed with a surface skimmer that pushes floating solids into a trough where the solids are removed. A Spiraflo clarifier holds solids in a sludge blanket that travels towards a center hopper for removal. Lakeside also has the Spiravac that pushes the solids to the sides where they get trapped between a skirt and wall and end up falling into a settling area.

Not all industrial wastewater treatment plants need grit removal systems, but some do. These systems remove fine grit like coffee grounds, bone fragments, eggshells, etc. You’d want to put in grit collection systems if you run a meat processing plant, a plastic extrusion company where microplastics make their way into the wastewater. Another example is a chicken farm where you’ll have seeds and eggshells getting into the wastewater.

#3 – Aeration

Aeration stirs up the wastewater to add oxygen to the mix. The oxygen feeds the microorganisms that help digest some of the contaminants remaining in wastewater. You don’t want any small particles of waste material to settle at this point. By continually stirring up the water, nothing can settle.

Magna Rotor Aerators have fiberglass rotor covers to eliminate spray. That will keep odors down and protect workers from wastewater droplets. Plus, the covers can trap heat from escaping in the cooler months. The aeration blades are stainless steel, which helps prevent corrosion.

#4 – Secondary Clarification

The water is getting pretty clean at this point, so wastewater goes into secondary clarification. The process is the same as you’d find in the primary clarification process. The remaining particles are negatively charged after the other processes. They’ll bond, which makes it easy for the clarifiers to remove these remaining particles.

#5 – Disinfection

Now it’s time to disinfect the treated water. Industrial wastewater carries a lot of contaminants like lead, chemical cleaning agents, cyanides, etc. Disinfection is required to remove them. UV disinfection is one option. Using UV lighting is an environmentally friendly method for disinfection without relying on chemicals like chlorine.

Chlorine and chlorine products are the first choice in industrial wastewater treatment. In addition to disinfecting the wastewater, chlorine also removes ammonia, kills any remaining organic materials, and oxidizes iron, hydrogen sulfide, manganese, and organic matter. Chlorine is cost-effective, but it has to be removed before the wastewater moves back into a lake, stream, or other body of water.

Other Wastewater Treatment Equipment That Benefits Your Plant

Are there other wastewater equipment and tools you should incorporate in your design? A SharpBNR is a process control system that allows you to fine-tune your equipment along the way. You can monitor readings and adjust aeration as needed. With this system, you maximize efficiency. If you have a SCADA system, you can monitor your wastewater treatment processes from anywhere.

The type of equipment you choose will lower your operating costs and effectively clean the water. Calhoun, Georgia, is home to several manufacturers of flooring, which leads to very corrosive wastewater. Lakeside Equipment helped the city build a sewage treatment plant designed for industrial wastewater by using open screw pumps with stainless steel tubes that withstand the corrosive materials.

Manufacturing plants, food processing companies, and other factories have two goals when it comes to industrial wastewater treatment. They want energy-saving designs that keep costs low, but they also want a water treatment system that properly cleans the water. Meet your budgetary goals and get a system that does exactly what you expect. Give us a call to discuss your industrial sewage treatment plant. Our team of specialists is happy to help design a system to your specifications that’s going to last.

What Equipment Helps Keep a Hydropower Plant’s Costs Down?

Hydropower is a clean, renewable energy source, and it accounts for 52% of the renewable electricity generation in the U.S. The benefits of hydropower are plentiful. Streams, rivers, lakes, and ocean tides are already in place. In some areas, the sun doesn’t shine every day, making solar a little more challenging to rely on during some months. The water always flows, even in the winter. This makes hydropower an effective, reliable energy source.

The largest hydropower structure in the U.S. is the Grand Coulee Dam in Washington. Water can flow at rates of up to one million cubic feet per second and has a capacity of more than 6,800 MW. It’s a pumped storage and reservoir facility. Virginia’s Bath County is a pumped-storage power station with two reservoirs. Its capacity is just over 3,000 MW.

In 2012, the U.S. Department of Energy estimated that the existing hydropower plants could generate 15% of their capacity. The development of existing dams and power plants could bring impressive changes to the power grid. To improve the infrastructure, cities look at upgrading outdated equipment and building new hydropower plants on rivers and streams to tap into the full potential of waterways across the U.S.

Changes to hydropower technology help keep costs low while also protecting the fish and other aquatic animals from harm. If you’re worried about keeping costs at a hydropower plant down, you’d be surprised by the options out there that are cost-effective and beneficial to fish and other marine creatures.

Components Found in a Hydropower Plant

To generate electricity from water, You have a dam that collects water in a basin and forces the water through a gate (inlet) where it goes downhill. At that inlet is a trash rake that clears debris and trash. The trash rake is essential as it prevents debris like root balls from older trees, branches, and manufactured waste from getting into the equipment and continuing downstream.

Water flows to the hydraulic turbine, where the turbine spins, causing a shaft within a generator to rotate. This motion generates electricity sent to the powerhouse and transformer before moving to transmission towers and lines for use in homes and businesses. As the water flows past the turbine, it heads to outlet discharge and returns to the river, lake, stream, or ocean.

Electricity demand fluctuates, so do water levels. In a drought, a river may run low. For that reason, some hydropower plants also have the ability to slow down at night and reuse water. Water is pumped back to the reservoir or basin instead, where it can be used multiple times to generate electricity.

Every Hydropower Plant Needs Trash Rakes

One of the most critical pieces of hydropower equipment is a trash rake. Whether it’s a deliberate act or an accidental one, a lot of litter ends up on roadways each year. Wind and heavy rains move that trash into streams and rivers. People on boats or picnicking near a lake, ocean, or river may leave trash behind that ends up in the waterways. All of that garbage heads downstream.

That’s just one of the problems that hydropower plants encounter. Trees, branches, leaves, and pine cones can all fall into the waterways and end up in the hydropower equipment and pipes if it’s not cleared.

When there is a hydroelectric plant, the trash, branches, and such are drawn into the facility, where it could jam equipment and bust pipes. To prevent damage, you need to clear this trash and debris. Trash rakes continually work to collect these items into dumpsters or other forms of containment for proper disposal. Lakeside Equipment has several options to meet your needs.

Cable-Operated Systems Vs. Hydraulically-Operated Systems

Some trash rakes rely on hydraulic systems to screen and rake the materials from incoming water and remove them. Others are operated through cables and winches that lower the rake to the bottom of a basin before drawing it back up.

#1 – Catronic Series (Cable-Operated)

This is a heavy-duty trash rake capable of lifting 20 tons thanks to a winch and cable system that drops and raises the rake. Once the trash and debris are collected, the system can transfer them to a nearby dumpster.

  • This system goes to depths of 200 feet.
  • Your options include a jib crane or a hydraulic grab crane.
  • It’s an energy-efficient option with lowered operating costs.

#2 – Hydronic H Series (Hydraulically-Operated)

The Hydronic H Series Trash Rake is designed to clean horizontal bars. Debris and trash move downstream where it collects, and the hydraulic rake pivots to fit into the bar rack to collect that debris for removal.

  • Operating expenses are lower with this energy-efficient equipment.
  • The horizontal design doesn’t harm the environment and protects aquatic creatures.
  • It’s easy to maintain as all components are above the surface of the water.

#3 – Hydronic K Series (Hydraulically-Operated)

This system uses hydraulics to operate the long rake arm and clean depths of up to 100 feet. It’s capable of cleaning larger objects like trees and root systems.

  • The rake comes with choices of traversing, swiveling, or stationary arms.
  • Enjoy easier maintenance as its components are all above the water.
  • The system’s lower operating costs and energy efficiency save money.

#4 – Hydronic Multifunctional Series (Hydraulically-Operated)

The M series is an energy-efficient solution that comes with your choice of an articulating arm or telescoping rake/articulating arm. It can be used manually, fully automatic, or a mix of the two. You can also have it with a single gripper, an orange peel grapple (claw-like grabber), or, for increased efficiency, the triple jaw gripper.

  • This rake handles depths of up to 150 feet.
  • All of the components are above the water for easy maintenance.
  • Adjustable pressures minimize wear while optimizing cleaning abilities.

#5 – Hydronic T-Series (Hydraulically-Operated)

Its telescoping boom and rake clear both fine and coarse screens without the need for chains, guides, or sprockets. This trash rake can clean at angles of up to 90 degrees and has a greater reach than other models. It’s a good choice when you need a rake that can handle many heavy items without wearing out quickly.

  • It has a more substantial lifting capacity.
  • Stainless steel or galvanized construction are options.
  • Components are above the water for easy maintenance.

#6 – Monorail Series (Cable-Operated)

This grab rake and cable system are clean water intakes through a trolley system that removes the trash once it’s collected. It’s best for plants where there are multiple bar racks. As multiple rakes are not required, it helps keep costs down.

  • Once in a parked position, maintenance is completed away from the bar rack system.
  • The equipment reduces operational expenses thanks to the energy-efficient design.
  • It can be retrofitted to your existing plant structures.

#7 – RO-TEC Drum Screens (Hydraulically-Operated)

These screens are self-cleaning and require less power to operate. They use the river’s current to move the drum screen, which keeps fish from getting drawn into them. That makes them one of the best choices for hydropower plants.

  • The drum cannot clog.
  • The drive components are above the water for easy maintenance.
  • It’s an energy-efficient option.

Which of these options sounds best for your hydropower plant’s needs? Are you stuck on two or three options? Give us a call. Our team of hydropower equipment experts can help you better understand the pros and cons to find the most cost-effective options that also help protect marine life and do exactly what you need the trash rakes to do.

Ten Common Misunderstandings About Storm Runoff and Sewage Treatment Steps

In the early 1900s, poor water quality led to about 100 cases of typhoid fever (a waterborne disease) per 100,000 people. As cities and states started looking into water treatment steps by 1920, the numbers dropped to about 34 cases per 100,000 people. Today, there are no cases of typhoid fever. Wastewater treatment is critical to having clean drinking water.

Even with all of the improvements, there are things people do not understand. One is that storm runoff and sewage treatment are not the same. Here are ten common misunderstandings regarding storm runoff and sewage treatment in the U.S.

Storm Runoff Is Just Rainwater, So It Doesn’t Need to Be Cleaned

When it rains, water that collects in roadways has to go somewhere. Cities and towns have gulleys and ditches where the rainwater goes to divert it to streams and other bodies of water. The runoff travels into city drains and channels that lead to rivers, lakes, and oceans. In a town, you’ll have gulleys and ditches instead.

People often think it’s just rainwater, so it’s clean and won’t harm the bodies of water it ends up in. This is incorrect. Along the way, it picks up motor oil and other automotive fluids that leak from cars traveling on the streets. Dirt, gravel, bark mulch, trash, leaves, grass clippings, and branches end up in it. They can clog the channels and cause back-ups. If there’s no clog, the garbage that the storm runoff picks up travels to the lakes and streams, too.

Cities and Towns Are Equipped for Weird Weather

Strange weather patterns are happening more than before. While wastewater treatment plants and state wastewater districts do what they can to prepare for the unexpected, it’s impossible to predict unusual weather patterns.

For years, the infrastructure has been failing due to older sewer lines, capacity issues, and budgetary concerns. It’s a leading reason that you see cities struggling with flooding and not being designed to handle the additional volume of storm runoff and flooding in wastewater treatment plants. Updating equipment to handle increasing flow rates is essential.

People Have No Impact on Storm Runoff Pollution

There’s another problem with storm runoff. People residing in communities where storm drains exist don’t realize that some of their habits are poisoning the streams and lakes. People may pour their motor oil, cooking oil, or unnecessary cleaners into a storm drain, and those contaminants end up in the bodies of water. Washing cars in a driveway leads to various chemicals traveling to streams, rivers, lakes, ponds, and oceans.

In the winter months, cities and towns that treat roads with salt send the melted snow and salt into nearby bodies of water. Metals from rusting vehicles and vehicle parts also make their way into storm drains and ditches.

Storm Runoff Always Goes to a Wastewater Treatment Plant

Another misconception is that stormwater goes through a wastewater treatment plant along with sewer water. This is not true. Some cities have plants that treat both, but it’s not common.

Storm runoff travels into storm drains that connect to storm sewers leading to waterways in most areas and never gets treated. In rural areas, there are usually ditches along roadways that connect to culverts that allow the storm runoff to travel to a nearby stream.

Rural Storm Runoff Isn’t as Bad as Urban Runoff or Industrial Wastewater

People often think that the runoff in rural areas isn’t as harmful as storm runoff in cities or industrial areas. This is incorrect. One of the worst pollutants in storm runoff is the fertilizer and manure used on farms and lawn treatments in residential areas.

Nutrients found in manure and fertilizer, such as phosphorus and nitrogen, travel to streams and eventually reach lakes. There, they feed algae blooms that can be harmful to people and animals.

Water Treatment Plants Are Always Designed To Handle Industrial Wastewater

A wastewater treatment plant does treat water from residences and businesses. Sometimes, an industrial manufacturer or company needs to install a wastewater treatment plant to pre-treat water before it goes to the sewers.

An on-site wastewater treatment plant helps a business recover and reuse water, reducing the volume of water drawn from municipal water supplies. Plus, it helps reduce the strain on area wastewater treatment plants. As industrial settings may create wastewater with heavier volumes of toxic chemicals, pre-treatment is critical.

Sewage Treatment Takes Care of All Pollutants

Sewage treatment doesn’t take care of all pollutants. The EPA sets guidelines that wastewater treatment plants meet, but some pharmaceuticals still get through. One study found that medications like birth control pills were getting through wastewater treatment processes and making their way to lakes, rivers, and oceans, affecting the reproductive health of fish.

Grinder Pumps End Issues With Everything People Flush

When people flush items they believe are flushable, it can be problematic to a wastewater treatment plant. Though it says “flushable” on the packaging, Flushable wipes do not dissolve in water. They get caught up on equipment at a treatment facility, and they can also create clogs in pipes. The same is true of “flushable” cat litter. Throw them out!

Some facilities add grinder pumps to help break down these items and prevent clogs. Grinder pumps can help, but it’s still best if people stop putting them into sewer systems and septic tanks.

There’s Little Home and Business Owners Can Do to Stop Pollution

Homeowners and business owners can do a lot to help stop water pollution. Carefully consider the products used for cleaning items like toilets, sinks, dishes, clothing, etc. Avoid items that contain harsh chemicals, phosphorus, etc. Aim for environmentally-friendly cleaning products.

Watch what you flush down a toilet. Toilet paper that’s two- or three-ply takes longer to break down. If you prefer thicker toilet paper, remember that it may clog your pipes. If you have a septic system, ask your septic company what they recommend. Many will tell you never to flush anything other than one-ply.

Do not put oils, especially cooking oil, down the drain. Avoid putting coffee grounds and bones down the sink if you use a grinder pump or garbage disposer.

Wastewater Treatment Plants Always Handle Heavy Loads

When wastewater and storm runoff are treated together in a wastewater treatment plant, the system must be capable of handling surges. You could have staff constantly watching for rising levels of sewer water, but it’s wiser to invest in wastewater processing equipment designed to address these sudden increases.

A SharpBNR Process Control is an example. If there’s a surge, the computerized system adjusts aeration and other aspects of wastewater treatment to ensure the water is treated appropriately before it’s released.

Having equipment that can handle increased flow rates is also worth considering. If your plant is upgraded to allow for excess capacity, it’s ready to take on heavy loads. Otherwise, raw sewage is released to prevent flooding within the wastewater treatment plant, which can damage the environment and lead to fines.

Talk to Lakeside Equipment’s experts in wastewater treatment equipment to ensure your plant is equipped for increases in sewer water. When you have considered for increased caused by changing weather patterns or excessive use from area residents, you’re protected from having to release raw sewage while also helping the environment. Call us to learn more about maximizing your plant’s effective wastewater treatment processes.