All posts by admin-seo

How Wastewater Screening Equipment Works

Wastewater is one of the most common forms of pollution, and in the United States there are wastewater treatment facilities to control this. According to the Environmental Protection Agency (EPA), wastewater contains large solids and grit that can interfere with treatment processes or cause undue mechanical wear. Over time, this increases maintenance on wastewater treatment equipment. In order to minimize problems, these materials require separate and special handling and maintenance. The EPA recognizes preliminary forms of wastewater treatment as screening, grit removal, septage handling, odor control, and flow equalization. Facilities that clean wastewater, such as water treatment centers clean it before  discharging it back into the environment. This can be done with machinery (both manual and mechanical). Machinery that has been especially engineered for wastewater treatment is most efficient. Let’s take a deeper look at some of the ways wastewater screening works.

Wastewater Screening Devices

In general, wastewater screening devices are classified based on the amount of material that is being removed from them. The design elements that classify screening equipment are size, depth, width, the screen’s angle, approach velocity of the channel, the discharge height, wind and other aesthetic considerations. There are different types of screening devices, both manual and mechanical.

There are different types of wastewater screens which include coarse screens, fine screens, and communitors and grinders (which are typically used at a smaller treatment facility). Screens can be made of a simple trash rack, or can be as complex as a mechanical bar system. There are also hydrocyclone systems which are devices used to separate liquids from solids, or grit from sludge, directly from the wastewater. The EPA identifies the specifications for the screens below:

Coarse Screens – Coarse screens remove large solids, rags, and debris from wastewater, and typically have openings of 6 mm (0.25 in) or larger.

Fine Screens -Fine screens are typically used to remove material that may create operation and maintenance problems in downstream processes, particularly in systems that lack primary treatment. Typical opening sizes for fine screens are 1.5 to 6 mm (0.06 to 0.25 in). Very fine screens with openings of 0.2 to 1.5 mm (0.01 to 0.06 in).

Communitors and Grinders – Comminuting and grinding devices (which consist of rotating slotted cylinders) are installed in the wastewater flow channel to grind and shred material up to 6 to 19 mm (0.25 to 0.75 in) in size

Hydrocyclone Systems – This is a system that separates liquids from solids directly from the wastewater. Heavier grit and suspended solids collect on the sides and bottom of the cyclone, while scum and lighter solids are removed from the center through the top of the cyclone.

Manual and Mechanical Screening Equipment

There are both manually cleaned and mechanically cleaned bar screens. A bar screen is essentially a heavy duty screen that uses a reciprocating rake which cleans the wastewater bar screen by pulling out debris.

In general, manually cleaned screens will require frequent raking to avoid them getting clogged up. This also avoids a buildup of solids on the screen itself and backwater levels from rising. Keep in mind that this manual work will require more labor costs over time. The time that is taken to clean the screen manually will also detract from the time it is serving its purpose, which can also cause overflow of waste solids.

Mechanical screens, on the other hand, aren’t subject to the same concerns, but they do require higher maintenance costs. Overall, you want to make sure you have a system that is the most efficient for your facility and needs. The Environmental Protection Agency suggests that plants utilizing mechanically cleaned screens should have a standby screen to put into operation when the primary screening device is out of service — which is a standard design practice for many newly designed plants. Having a replacement screen will prevent clogging and backup, similarly to concerns for when a manual screen is being cleaned. Larger facilities are more likely to use a mechanical screen in order to reduce labor costs (as the equipment is more costly itself), and to improve the conditions of the overall flow of the wastewater and water treatment  process. The cost for screens varies, of course, depending on the technology that is used and that is available in each particular area.

Efficient Wastewater Equipment

Our wastewater treatment equipment is efficient in that it screens, washes, compacts and dewaters in one smooth, seamless operation. This equipment is designed to handle wastewater, septage, sludge, scum, and grease.  Our equipment offers:

  • Compact design with screening and grit removal in one unit
  • Security control station allows access for authorized haulers
  • All stainless steel construction resists corrosion
  • Available for indoor or outdoor environments
  • Multiple sized units to suit your application
  • Unload up to two (2) waste haulers at the same time

Selecting A Wastewater Treatment System

When considering a wastewater treatment system, you want to select one that is appropriate for your needs. Keep in mind your location, facility, anticipated costs, the size of the system, and its overall functioning. One of the most important components of a water treatment system is the screen. As discussed, screens come in different sizes, depths, widths, and different designs according to the technology available in the area as well as for your budget. Overall, mechanical screens are commonly used in larger treatment facilities and require lower labor costs.  No matter what type of equipment you choose, it is important to have a backup screen so your operations can run smoothly, avoiding backup and unnecessary problems. If you are looking for a water treatment system, take a look at our specially engineered equipment with quality materials which has been made to maximize efficiency and minimize setbacks.

Understanding the Role of Filtration Systems in Effective Water Treatment

Did you catch the recent news about how the massive draws of water by agriculture, homes, and businesses have shifted the earth’s axis a tiny amount to the east? It’s not a huge shift – only about 1.7 inches per year – but it’s enough that it could play a role in climate change and the global sea level rise.

Many districts have water treatment plants and clean water that’s drawn from rivers, lakes, or ponds. In some areas where water sources have been running water reuse is essential. That means treating wastewater, pumping that cleaned wastewater to water treatment plants, and preparing that water for people to use. For this to work, filtration systems are a key component in making sure contaminants are removed. 

The basics of water treatment are:

  1. Coagulation – Chemicals like iron or salts are mixed into the water. They have a positive charge. Meanwhile, contaminants like dirt have a negative charge. The opposite charges attract and cause them to bind. 
  2. Flocculation – The water is mixed so that heavier particles form. Additional chemicals may be added to get the particle clumps known as flocs to get as large as possible.
  3. Sedimentation – The water is now allowed to settle. The larger flocs sink and can be removed from tanks. The rest of the water goes to filtration.
  4. Filtration – The treated water is pumped or travels via gravity or centrifugation through some kind of filtration system to remove bacteria, chemicals, parasites, viruses, and any other particles.  Contaminants like cryptosporidium E. coli, giardia, and legionella can be found in groundwater and surface water due to animal and human waste and can make humans sick if they’re not filtered and exposed to a disinfectant.
  5. Disinfection – Water is treated with a chemical disinfectant such as chlorine, chlorine dioxide, or chloramines to kill any remaining bacteria, parasites, or viruses. Some water treatment plants use UV lights and ozone, but chlorine is often preferred as it can also kill the germs that build up in pipes around the water treatment plant. Once the water is treated, it’s often allowed time to sit to ensure chemical disinfectant levels meet the EPA guidelines before the water goes to homes and businesses.

The Types of Filtration Systems and Their Role in Treating Water

What are the different types of filters used in water treatment? Several options are good for adsorption, meaning they capture and hold contaminants, and only clean water is allowed through the filter. Most plants use one of these filtration options: 

  1. Activated Charcoal:

Activated carbon filters are good for removing odors from water. They also capture particles and germs. Water treatment plants tend to use granular activated carbon as it’s able to adsorb a variety of contaminants, including some pharmaceuticals. When activated carbon needs to be replaced, it’s also compostable, which makes it an environmentally-friendly option. 

This is also likely to be a form of water treatment that will be familiar to you. It’s the charcoal material found in many fish filters, pet water fountains, and pitcher filter systems like Brita or Pur. If you have a refrigerator with filtered water, you likely have an activated carbon filter doing the work.

  1. Coconut Fiber Filters:

Some water treatment plants have tested out coconut fiber filters. Created from the fibers of a coconut shell, these filters are great for absorbing contaminants. Plus, it gives the coconut shell fibers a second use after the coconut meat is removed for the food industry.

Coconut fibers don’t break down as easily. While an activated carbon filter usually requires some time to clear out the carbon dust, you don’t run into that with coconut fibers. It’s worth a closer look if it’s an option in your area.

  1. Microfiltration:

Microfiltration is one option that can be used in a water treatment plant. It’s good for removing bacteria and suspended solids, but it’s not as good for removing viruses and salts. If it’s used, it’s usually a pre-treatment step.

  1. Nanofiltration:

Nanofiltration is more energy-efficient than reverse osmosis and is more likely to be used when converting treated wastewater to clean water for residential and business use. The process is similar to reverse osmosis, but it uses lower pressure. It’s also not as effective as reverse osmosis and removes about 90% of salts and almost all of the bacteria, organic matter, and viruses in water. It’s better at removing contaminants than either microfiltration or ultrafiltration.

  1. Reverse Osmosis:

Reverse osmosis requires a filter and is one of the best ways to get contaminants out of water. Water is pushed through a semipermeable membrane to remove viruses, bacteria, organics, dissolved salts, and other particles. It’s only 99% effective, but chemical or UV treatments kill off anything that remains. 

  1. Sand:

There are two types of sand filtration. Slow sand filtration has the water travel through a funnel of sand where bacteria have colonized on the surface of the sand. As the water slowly passes through the bacteria layer known as biofilm, the microbes digest any contaminants. Anything that slips by is caught in the sand. It’s a slow process and requires a lot of space. 

Because slow filtration is a time-consuming process, rapid sand filtration is often preferred. The sand filters have higher flow rates and don’t require as much space, but the sand filters do have to be back-washed regularly.

  1. Ultrafiltration:

We’ve talked about microfiltration and nanofiltration. Ultrafiltration falls between the two in terms of what it can and cannot remove. It’s not good for removing salts, but it’s fantastic at removing bacteria and viruses.

With ultrafiltration, water is pushed through a filter with pores as small as five nanometers at low pressure. The tiny pores capture viruses, organic material, and other contaminants. Filters are back-washed with chemicals from time to time. Typically, ultrafiltration occurs as a pre-treatment step before reverse osmosis.

Which System Is Best?

Which is best? It’s hard to answer that without having a list of the contaminants that are most prevalent in your area.

When it comes to filtration systems, the type you use will vary depending on the contaminants that affect your district’s water. If you have higher levels of E. coli due to a number of area farms, you’ll likely need a different filtration system than a water treatment plant in a city where there are many industrial plants. Working with an expert in water treatment filtration ensures you have the right system.

Continuing research will help make water treatment processes even better. As water treatment plants look for better ways to filter newer contaminants like PCBs and forever chemicals, hopes are to make water cleaner, faster. 

Stay up to date on the latest water treatment advancements by working with an expert in clean water. Lakeside Equipment is nearing a century in water treatment equipment and technologies for your water treatment and wastewater treatment plant. Give us a call or reach us online to learn more about the best water treatment filtration options.

How Grit Collection Technology Helps Keep Equipment Running and Water Cleaner

What is grit collection technology? Before you can think of that, you have to think about grit. Grit is the fine particles of matter like sand, sludge, and other abrasives found that finds its way into sewers and septic tanks or that comes from rivers, lakes, and streams.

Wastewater grit is especially troublesome. It’s more than sand. It can be eggshells, bones, and coffee grounds that go down the sink. It can be the sand and gravel that washes from a street into a sewer drain. These materials are never a consistent size or shape.

Now think about the industrial settings and treatment plants that encounter grit in water or other liquids. Not only can they clog equipment, but the abrasive materials wear down parts over time. It gets costly. Grit collection technology is the equipment and processes that clear grit and other particles from water before it’s used in industrial or residential settings.

How Does a Wastewater Treatment Plant Clean the Water?

Wastewater treatment plants use grit collection technology every day. Not only must these plants remove odors and bacteria, but they also need to take the wastewater and make it clean. This is a multi-step process.

  1. A screw pump controls the rate at which water flows. Bearings are important to the screw pump’s lifespan, so you want quality components. Lakeside Equipment has engineers that look at the lift and flow rates you need, and consider those with the incline and required speed in order to develop the ideal pump for you.
  2. Screens filter all large materials like paper towels, plastic wrappers, and toilet paper to prevent damage to pipes and avoid clogs. As wastewater continues through the equipment, the screens get smaller and smaller. Screens may start with gaps of 1.5 mm and go as small as 0.06 mm. To clean the screens, there may be a trash or screen rake that automatically clears and removes the debris.
  3. In between the different screen sizes, there are grinders that grind the waste. The idea is to keep grinding the waste and catching it in filters until the water that passes is clean.
  4. There are also comminutors that capture the large material and chop it into more uniform sizes for the grinders to work with.
  5. Grit chambers and grit collectors are the pieces of equipment that collect the grit so it can be taken to a landfill or facility for disposal.

To get to the cleanest water possible, you need a system that effectively filters out silt and other particles. These steps are all part of the basic process. There are several systems available, and each works a little differently depending on the components you choose.

Types of Grit Removal Systems

Lakeside Equipment Corporation specializes in several types of grit removal systems. There are advantages to each one.

Aeroductor – The Aeroductor system avoids having any motorized parts that are submerged. It can be constructed from stainless steel to prevent corrosion. Its biggest benefit is that it can separate and wash grit at the same time.

Headworks Packaged System – H-PAC systems are stainless steel and prevent corrosion. It has by-pass options for the grit chamber and screen.

Grit Classifier – There are several types of Grit Classifier systems to allow you to find the best solution for your needs. A screw conveyor gets rid of grit that is ready to be disposed of. That screw conveyor is designed for strength and durability.

In-Line Grit Collector – In-line is an affordable system that uses aeration to keep particles from settling. It’s best for a system where the flow rate is under 6.0 million gallons per day. Motorized parts remain above water for easy maintenance.

Raptor – If you need a grit removal system that has a conical design where grit and particles are washed and separated with precision, the Raptor Grit Washer is a good choice. It’s made from stainless steel to help prevent corrosion. It handles a variety of flow rates and reaches grit discharge rates of 90 percent.

SpiraGrit – With SpiraGrit, you get a compact system that doesn’t take up much space. The bearings are not submerged and the components do not corrode quickly, which makes maintenance a breeze. It handles all flow rates.

What You Need to Consider

Whether you’re replacing equipment or planning a new system, you need to carefully weigh the water flow rates, longevity, and requirements. Experts can help you decide the best grit removal technology for an efficient, effective treatment system.

Would you like more information on equipment that helps with grit removal? Use the online form to get help finding the right system for your needs. You can also call (630) 837-5640.

Developing an Efficient and Reliable Wastewater Process in Your Factory

Running a wastewater treatment plant is a multi-faceted process. The safety manager has to focus on workers’ safety, while the energy manager has to consider how much energy is being consumed. You have production teams working on proper treatment measures at the rates people and businesses need. There are also maintenance workers that have to keep everything running smoothly and avoid downtime.

Every wastewater treatment plant manager needs to think of ways for the municipality’s plant to be efficient and reliable. This is key to lowering energy consumption and avoiding costly fines caused by raw sewage release. How do you develop an efficient, reliable wastewater treatment process? 

Start by Answering a Few Questions

Before you do anything, you need to address what your wastewater treatment process needs to achieve. Are you in an industrial area where a lot of your wastewater comes from businesses? Are those companies required to pre-treat wastewater before it reaches your facility? 

If you’re in a heavily residential area, toilets, washing machines, showers, and dishwashers or hand-washed dishwater is the bulk of what you’d be cleaning. Most facilities treat water from both of these. You may also have a high percentage of trucked-in septage that’s pumped from homes, and those homes may only have tanks pumped every few years, so there may be more solids than usual.

Once you know what wastewater is generated, how much will you get on an average day? When do you find flow rates increase and when is the flow much slower? What are the regulations in your area? To get approval from the EPA, you’ll have to clean the water as required by the EPA. The equipment and plant design you choose needs to be able to meet these requirements.

Most wastewater treatment plants will be looking at a hauled waste receptacle, screens and trash rakes, a grit removal system, clarifiers, and biological treatment. If you need a small wastewater treatment system for your factory, a Raptor Complete Plant doesn’t need a lot of space and does everything you need. Otherwise, you’ll want to look at individual components. 

Cut Energy Costs Without Sacrificing Treatment Speeds

In a wastewater treatment facility, aerators consume the most energy and pumps are close being. Upgrade to more efficient equipment to cut costs. You should also use systems that scale up and down as flow rates increase and decrease. 

It’s also worthwhile to look into equipment that can take the methane produced in wastewater treatment and convert it to fuel you can use to heat or power your plant. You may still use a lot of energy when running your plant, but you will slash your heating bills in cold weather and electricity bills year-round.

Aim for Easy-to-Maintain Equipment 

When equipment is above the water, you don’t have to drain tanks and ponds down before repairs or maintenance takes place. Motors with sealed bearing assemblies that lubricate themselves reduce maintenance needs. 

Another consideration is to get pumps that can clean impellers by shifting from minimum to maximum speeds. That can save a lot of time with maintenance demands.

Invest in Automated Process Controls

SCADA is important for monitoring all of the processes in your plant. What is SCADA? It stands for Supervisor Control and Data Acquisition. It’s a computer system that collects and analyzes real-time data from the equipment in your wastewater treatment system to alert you to potential issues. It’s a must-have technology for efficiency and troubleshooting.

Add Sharp BNR to SCADA and monitor processes and quickly adjust aeration to maximize your plant’s efficiency. You can add other technology like Variable Frequency Drives and motor starters for an all-in-one system that practically runs itself. 

That can help keep workers from needing to be at the plant 24/7. If there are issues, you can check remotely and make adjustments or decide if making the drive is necessary.

Slash Costs on Screenings by Having a Wash Press

The first stage of a wastewater treatment process is to screen materials like rags, plastic, and other litter that shouldn’t get flushed but often does. Those materials are caught on screens and removed to landfills. These organic materials are heavy and carry fecal material that will smell and can drive up disposal costs at an area landfill. The less you have to dispose of, the better it is.

A Raptor Wash Press screens this organic material, but it washes and dewaters it. Less water means lighter materials, which makes it easier to dispose of in a landfill. This equipment is capable of reducing screenings by half and weight by as much as 67%.

In addition, more of the water in your wastewater continues into the next steps in wastewater treatment. Eventually, more water is being returned to the community, which is especially helpful in areas where droughts are impacting water levels.

Have Extra Storage Tanks for Overflow Situations

If there is a problem, extra storage keeps your workers from having to release raw sewage. The excess wastewater can sit in tanks until the rest of the system is caught up. While you can ask residents to conserve water and avoid flushing toilets and limit showers each week, there are no guarantees they will. Storage is important.

Think Ahead and Be Prepared for Emergency Situations

Several cities in Vermont were hit by a historically heavy rainfall that flooded several wastewater treatment plants. The flood was only part of the problem. Power outages knocked systems offline, which meant wastewater wasn’t getting treated. More than a week later, towns and cities like Barre, Barton, Bridgewater, Hardwick, Johnson, Ludlow, Montpelier, and a handful of others are still not able to process at full capacity. Some of the workers are sleeping at the plant to keep up with changing flow rates.

No one expected upwards of ten inches of rain in one day, and days of more and more rain and thunderstorms are hampering efforts to get back to normal. With climate change and climate phenomena like El Nino, what can you do to make sure your wastewater facility runs efficiently and reliably at all times? You can’t predict the future, but you can take measures to plan ahead for changing weather patterns that your plant is ready for.

If your plant is relying solely on electricity and will suffer in an outage, consider having a backup power source like solar or wind. A backup generator is worth considering if solar and wind are not options. 

Work With a Wastewater Treatment Expert

Lakeside Equipment brings close to 100 years of expertise in the water treatment industry. The sales team and engineers listen to your needs and concerns and help you develop the best ways to develop an efficient, reliable wastewater process. We’re happy to answer questions and give our expert input on how to improve your wastewater treatment plant’s equipment and processes at the budget you need to stick to.

How Technology and Data Is Improving Wastewater Treatment

Since government water quality standards were required, water is nothing like your ancestors experienced. Still, there are improvements that can be made. Using data and technology, wastewater treatment engineers continue to make strides to ensure that people throughout the world have clean, safe water.

A Brief History of Water Treatment Practices

Civilizations like Ancient Greece, Ancient Egypt, and Mesopotamia all strived to dispose of human waste to keep water sources clean. In the United States, Hans Christopher Christiansen helped launch the nation’s first public water department in Pennsylvania in 1755.

Baltimore, Maryland, and Boston, Massachusetts, were the first two cities to create municipal water treatment plants. Diseases like cholera were running rampant. These did not come into fruition until the mid-1800s. It wasn’t until the 1910s that chlorine was used to sanitize water. World War II led to new discoveries on treating water to make it clean and safe.

Surprisingly, despite the advancements, the U.S. government did not pass the Safe Drinking Water Act until 1974. At this point, tests were used to make sure the levels of certain contaminants were monitored and maintained.

Understanding How Wastewater is Processed

Wastewater is the water that travels through sewers or is trucked in after septic tank cleanings. It comes from washing machines, dishwashers, sinks, bathtubs, showers, and toilets. In a sewer, it also contains water that drains from streets on a rainy day or when the snow melts.

Wastewater contains everything from soap and cleaners to food scraps and human waste. It can be the water that comes from an industrial setting like a paper mill or manufacturing plant. For this water to be reused or returned to lakes and streams, it needs to be filtered and cleaned.

Cleaning wastewater requires multiple steps. First, the solids need to be filtered out. The remaining water, known as effluent, continues going through smaller and smaller screens that keep filtering the grit. That grit is disposed of in landfills and other facilities that can process it.

Aeration adds oxygen that can help break down gases and assist materials in the effluent as they decompose. This secondary step continues to help get rid of grit and other materials.

The third step is to help separate the sludge and scum from the wastewater. Sludge settles at the bottom is moved to digesters. Scum, such as oils and plastic materials, float to the top of the tank where mechanical rakes remove them.

Filtration is a fourth step that helps remove bacteria by running the wastewater through sand or carbon filters. In addition to removing bacteria from the water, iron is also removed.

In the final step, the filtered water is moved to tanks where chlorine helps kill off any remaining bacteria. As the chlorine destroys remaining bacteria, it also breaks down leaving minute traces of the chemical. At this point, it’s ready to enter rivers and become part of a natural water source again.

How Do Data and Technology Help?

Computers have become an important component in wastewater treatment. Not only do they help with research and data, but they also run the CAD software that can help design the right system for your needs. Once the blueprints are in place, you’ll be able to pick the equipment you need. Field engineers have the training and hands-on experience to make sure installations of entire systems go smoothly. If there are hiccups, the engineers are on-hand to figure out and implement a solution.

The EPA maintains the Industrial Wastewater Treatment Technology Database to make it easy to find Clean Water Act rules and guidelines. This resource helps make it easy to research the latest advancements, which can help companies hone their wastewater practices. You can search by topic, industry, pollutant, technology, or download the entire database.

Technology alone has led to many advancements in productivity and operational costs. Wastewater treatment systems of the past relied on humans to manage many of the controls and processes. While today’s computers can adjust the flow rate of wastewater and clean screens, humans once had to carefully monitor and manage those aspects.

Motorized rake systems remove oils, plastics, and other trash now, but humans used to have to rake these materials out. Screens are cleaned automatically. Computers can take readings, store them for management to use, and this makes it easier to manage overall costs and expenses.

Lakeside Equipment has been helping with wastewater treatment since 1928. Engineers and other wastewater specialists work with companies to create effective water treatment systems. The company can keep operating costs down and ease maintenance and repair requirements. Complete the online form to talk to a customer service representative.

The Benefits of Installing a Wastewater Clarifier in Industrial Facilities

Clarification is a key step in cleaning wastewater. Primary clarification helps remove solids like FOG, scum, and sludge. Secondary clarification starts to remove some of the germs, microbes, and small particles. Before your industrial wastewater heads to the sewers, you must add a wastewater clarifier. What are the benefits?

Stay in Compliance With Local, State, and Federal Regulations

Have you looked at your local, state, and federal regulations? You may be legally required to install a wastewater clarifier

The federal government has many restrictions on wastewater treatment in categories like battery manufacturing, the dairy industry, medical offices/hospitals, meat and poultry processing plants, paper/pulp mills, seafood processing plants, and dozens of others. If you’re one of those industries, industrial wastewater treatment is required.

States may have their own regulations. Some regions of Massachusetts set stricter rules than the EPA has for the reuse of biosolids from wastewater treatment. You can’t always follow federal government rules and still be doing everything correctly. You need to check with your local wastewater district to find out what state rules apply to you.

Finally, you might find the city or district you’re in requires it, too. In Carson City, Nevada, industries like commercial laundromats, food producers/restaurants, hotels with dining facilities, mortuaries, and wholesale bakeries have to reduce the biochemical oxygen demand (BOD) and suspended solids they send to a wastewater treatment plant. If they don’t meet the local requirements, they can pay huge fines.

Help Protect the Environment

July brought flooding rains to some areas of Vermont, and several wastewater treatment plants were either destroyed or had to reduce operations and release raw sewage directly to the rivers their facilities connect to. 

If you’re clarifying wastewater before it leaves your industrial facility, you help protect the environment. It can be tremendously beneficial to the community and bodies of water in the area if the water reaching the facility is already pretreated. You do a lot to help protect the environment in case of raw sewage releases.

Create Less Hassle Within Your District

People are going to be upset if they find they’re paying higher rates for a system that’s being overwhelmed by industrial wastewater. When you add clarifying equipment and treat the wastewater leaving your facility, you’re less likely to frustrate and even anger people in your wastewater district or the workers at the local treatment plant.

You’re not overwhelming the system and creating a strain on equipment that’s getting older. This is a win-win situation for everyone.

Heighten Worker Safety

Depending on your industrial facility, you could be releasing some hazardous liquids that can impact your wastewater treatment plant’s workers. If you have a meat processing facility, your wastewater likely contains high levels of E. coli, salmonella, or other foodborne illnesses. The workers are at a higher risk. When you clarify your industrial wastewater first, you take the initial step to help keep them safe.

Reduce Your Potential Costs

When you treat wastewater before releasing it to a sewer or body of water, you could be charged steep fines if there are any contaminants in that water. A California company was fined almost $5 million for releasing untreated wastewater into a public wastewater treatment plant without being permitted to do so. They were releasing almost 250,000 gallons taking up almost 40% of the wastewater treatment plant’s capacity.

If you’re not approved to release wastewater to the local facility and aren’t meeting regulations regarding clarification or pre-treatment, you could end up paying millions of dollars, which could bankrupt you.

Improve Your Company or Brand’s Image

Your brand’s image can take a hit if you’re not clarifying your industrial wastewater. Bad press can destroy a business’s reputation. While adding an industrial wastewater system does cost money, it can pay off when it comes to how the public feels about your business.

As an example, breweries often send a lot of wastewater to local wastewater treatment plants every day. Organic materials and grains that are in a brewery’s wastewater are hard to treat. When an abundance of brewery wastewater comes in and needs extra time to treat, it takes up room from others in the municipality. It becomes frustrating to area residents and wastewater treatment plant operators

When a brewery looks for grants and other financing options to add its own clarification equipment, it can do a lot for its reputation. Plus, the grains that are filtered out can become feed for cattle and livestock and the organic matter can be used as fertilizer. 

Factors to Consider When Choosing a Wastewater Clarifier

Before you invest in an industrial wastewater clarifier, make sure you purchase the best wastewater treatment equipment for your needs. Your budget will play a major role in what you eventually purchase, but there are several other things to keep in mind.

The Different Types of Clarifiers

There are different types of clarifiers. With some, the wastewater enters on the side at the top and travels downward with a whirlpool type of flow. Others enter the center. It helps to learn a little more about these popular options to understand what they can do and how they work.

Spiraflo:

Wastewater comes into the outer perimeter of the clarifier tank at the top and travels along a raceway that’s positioned between the outer wall and skirt. Water spirals down the skirt to the main area where settling occurs. Suspended solids are then caught in a sludge blanket for removal through the central hopper.

A peripheral-feed spiral clarifier like the Spiraflo often performs up to 4x better than a center-feed clarifier.

Spiravac:

Like the Spiraflo, the Spiravac has wastewater entering from a pipe at the top of the raceway and spiraling down to the settling area at the bottom. Sludge is then removed through Controlled Removal using separate sludge removal pipes that lead to a sludge well or Direct Removal using a header pipe that uses a rotating manifold to discharge the sludge.

In addition to those two popular wastewater clarifiers, full surface skimming is also recommended. There are full-surface ducking skimmers that cost less and have hinges that allow the skimmer to fit under a scum trough. A motorized full-surface skimmer has a drive that rotates the skimmer arm and a blade that pushes floating scum and FOG to a trough for removal.

Your Facility’s Available Space

How much space is available? If you don’t have a lot of space, you need to find a clarifier that takes up as little space as possible. A Spiraflo ranges in size from 8 feet in diameter to 130 feet, so it’s a good option if you need to stick within a certain amount of space.

The Maintenance Requirements

Finally, look for a clarifier that requires little maintenance. If you choose a system that has a lot of steps to keep it maintained, hire additional staff to ensure you have a team available for routine maintenance. 

Work With a Water Treatment Professional 

An industrial wastewater clarifier is a valuable asset for any facility, and it’s one you shouldn’t rush into purchasing without research and expert knowledge. You need a system that helps you save money, stay in compliance, keep people in your municipality happy, and reduce the strain on your area’s wastewater treatment plant. 

Ensure you get exactly what your plant needs by working with a water treatment expert. The team at Lakeside Equipment is highly knowledgeable in all aspects of water treatment, including clarifiers. Talk to our team to discuss your facility’s goals, the space you have, and your budget. We’ll help you find the best clarifier for industrial wastewater.

How A Hauled Waste Receiving System Works

Hauled waste, according to the Environmental Protection Agency (EPA), is waste that is comprised of sewage, domestic waste, non-domestic waste, or a combination of both types of waste. Some types of waste are toilet waste and domestic septage, ground water, sand or grease traps, restaurant grease, wastewater from drilling processes, and pass through from landfills. Hauled waste is generally transported by a hauler system which is discharged to a public facility, often known as a Publicly Owned Treatment Works.

Depending on where you live, your home is likely connected to either the city’s sanitary sewer collection system, or you may have an in-home septic system. A septic system is a highly efficient, self-contained, underground wastewater treatment system. The tank is a water-tight box that is connected to a pipe which connects to the public sewer system. Within the tank, solids are separated from wastewater, and the wastewater is what flows into the pipe that is connected to a drainfield of pipes that flow to the public system.

On the receiving end, the waste is received by a hauled waste system. This system works by removing debris and inorganic solids from all of the forms of waste, such as the domestic waste, restaurant grease, residual landfill solids, and other waste. A machine, which is the primary component of the hauled waste system is a piece of equipment that handles the waste with its screens which filter the waste. Some of the machines have cylinders with rotating screens, and various other mechanical functions that work to ensure that grease, grit and small debris don’t plug everything up. In some cases, a separate, additional grease trap might be connected to the main machine for added support. As a part of the process, the waste that is screened is essentially compacted, dewatered and reduced to a cleaner solid.

One problem that often occurs with hauled waste systems is that the waste is more concentrated and therefore is not equally distributed; this can cause several septage and maintenance problems. With a higher concentration, the screening process becomes more tedious, which reduces overall efficiency and has the likelihood to slow down operations. For these reasons, it is necessary to have a hauled waste system that is able to control for large amounts of waste for maximum functioning. Having a fully automated machine that has the capability to screen and filter large amounts of waste without being overburdened allows the waste to be unloaded more rapidly. The waste gets unloaded into a septic acceptance plant or waste hauler.

During the process of hauled waste removal there is a potential for contamination. Contamination may occur due to hazardous waste materials that Publicly Owned Treatment Works come into contact with, and this is certainly something to consider. To avoid contamination, maintenance or facility issues and any other adverse effects, a system that is designed to handle heavy solid loads and high grease concentrations, for example, is required. This can be obtained by using a high quality water treatment system. Of course, following the appropriate safety guidelines are compulsory.

The Environmental Protection Agency suggests these specific controls regarding the discharge of waste.

  • applying limits to non-domestic hauled waste,
  • issuing permits to waste haulers,
  • implementing tracking systems,
  • sampling loads, and
  • refusing all hauled waste.

As mentioned before, a high quality water treatment system is necessary. Not only does it take into account the above suggestions, but also offers these components and advantages:

  • Compact design with screening and grit removal in one unit
  • Security control station allows access for authorized haulers
  • All stainless steel construction resists corrosion
  • Available for indoor or outdoor environments
  • Multiple sized units to suit your application
  • Unload up to two (2) waste haulers at the same time

At Lakeside Equipment Corporation, we have considered how to manage a maximum efficiency water treatment system. We are proud not only of the individual components of our hauled waste systems, but of the full service we provide with it. Lakeside Equipment Corporation has customer specific designs to meet your unique needs, the latest in CAD-based engineering designs, experienced field service engineers to help with on-site installations, locally authorized service personnel to contact on a daily basis, and parts and inventory ready to ship when you need it. We also offer an option for dual inlets to allow two haulers to unload at the same time. Keep in mind that a pre-engineered design reduces engineering costs. Our integrated designs allow haulers to unload faster than any haulers on the market — again, creating maximum efficiency. Contact us today so we can assist with your waste removal needs!

How Your Facility Could Benefit From Biological Wastewater Treatment

Biological wastewater treatment is a process where bacteria break down the organic substances in wastewater. Wastewater typically contains food particles, toilet paper, solids, and even pharmaceuticals, pathogens, toxins like cleaning products, and heavy metals.

All of these have to be cleaned from the wastewater before it is clean enough to be released to nearby lakes, rivers, or ponds. It’s an essential part of any wastewater treatment program. Whether you own a wastewater treatment plant or have a plant or industrial facility that produces a lot of wastewater each day, you need a biological treatment system that helps clean wastewater.

How Does Biological Wastewater Treatment Work?

The wastewater that comes into a treatment plant is contaminated with many things. You have urine, feces, water from showers, dishwashers, washing machines, and baths. Water coming in from a sewer may have wastewater from factories, car washes, industrial laundromats, and public toilets. It has to be cleaned properly before it is released back into your community’s lakes, rivers, ponds, etc.

To do this, water flows or is pumped into a septage acceptance plant and goes through screens into clarifying tanks where solids sink to the bottom and are removed using pumps. Floating items like fats, oils, and grease float to the surface and are removed. Trash rakes work with the screens to clear out larger items like plastics, rags, and flushable wipes, which really should never be flushed as they do not break down as you’d expect.

While you may have removed a lot of material and sludge from the wastewater, there are still many contaminants in the wastewater. It will go into an aeration tank where it is pumped full of small oxygen bubbles. This oxygen is important as it’s part of a biological aerobic treatment process.

With this, oxygen feeds the bacteria, which gets them energized to start feeding on the pollutants. That breaks down pollutants and converts them into phosphate, nitrate, and carbon dioxide. The wastewater settles again, and any remaining sludge is removed. This process continues with bacteria helping remove pollutants 

Aerobic treatments are faster than the anaerobic process that skips the use of oxygen. With this process, biogas is produced, which can affect the environment. Because of this, aeration is often preferred as it’s fast, efficient, and effective. 

If you need a cost-effective option for biological treatment using aeration, a Sequencing Batch Reactor has a small footprint and can be expanded if that’s needed in the future. It has a continuous feed system that repeats the aeration, settling, and decanting phases in a reactor basin. It’s a five-phase operation:

  • Mix Fill – The valve opens to allow raw wastewater into the tank as the mixer turns on, but aeration is turned off.
  • React Fill – Aeration turns on and off as phosphorus, nitrogen, Chemical Oxygen Demand (COD), and Biological Oxygen Demand (BOD), are processed or treated. 
  • React – The valve allowing raw wastewater into the tank shuts off the flow. Aeration and mixing continue to completely treat the wastewater for the final stages before release.
  • Settle – Aeration and mixing stop to allow any solids to sink to the bottom or rise to the top. 
  • Sludge Removal – Sludge and scum are removed from the system and the clear water is released or decanted. 

What Are Biological Wastewater Treatment’s Benefits?

Biological wastewater treatment is an essential part of a wastewater treatment plant. It’s what keeps pollution out of rivers, lakes, and oceans. It also helps conserve water in some regions as treated water goes into tanks where it’s drawn into the water treatment facility for additional disinfection to make it safe for the community members to drink, cook with, and shower in.

Facilities that use a lot of water can also benefit from biological wastewater treatment processes. If you own a facility like a meat processing plant, the strain you put on a local wastewater treatment district is tremendous. You can improve your company’s reputation by taking extra steps to lower the strain you’re putting on your district’s facilities.

With industrial wastewater facilities that handle biological treatments before releasing your wastewater to the sewers, you help out. You lower the work required to treat the wastewater you’re releasing, which reduces your district’s operating costs.

Wastewater treatment districts that use biological treatment processes find it easier to comply with federal and state regulations. Businesses that pre-treat wastewater help keep districts in compliance. 

People also benefit. With an increased number of industrial wastewater facilities at different factories and plants, it creates jobs for people in your community.

It creates cleaner water that’s going into lakes, rivers, and oceans. If you live in an area where you spend time in the water, you want the assurance that you’re swimming or boating in clean water and not being exposed to contaminants. You don’t want to eat fish that are a potential health risk because they’ve ingested too many pharmaceuticals or toxins.

Studies have found that fish that are exposed to water with high levels of birth control medications are impacted. They don’t lay as many eggs, which can deplete the availability of seafood. Biological wastewater treatment is an important step in protecting waterways.

What Types of Biological Wastewater Treatment Systems Are Popular Today?

As mentioned earlier, aerobic is quicker as you add oxygen into the process. But, anaerobic is best when you want to convert your organic materials into methane, carbon dioxide, and biomass. A third option, Anoxic, requires the use of nitrates, nitrites, selenite, or sulfate to feed the bacteria.

Activated sludge is the most commonly used biological wastewater treatment method and it’s been around for over a century. It’s an aerobic wastewater treatment technology. It’s going to be the first choice in many districts.

Ultimately, the decision is yours, but it’s a conversation you should have with an expert in wastewater treatment. You need to make sure whatever changes you make remain in compliance with federal and state regulations.

If your wastewater treatment facility isn’t using biological wastewater treatment processes, it’s time. Lakeside Equipment can help guide you into the best processes to add to your current system. Our wastewater experts advise you on the cost of biological wastewater treatment to ensure any additions fit your district’s budget. We’ll help you make sure you are following regulatory requirements. 

Lakeside Equipment has been helping clean water around the world for close to a century. Our team has the solutions you need at a budget you can afford. Reach us online or by phone to talk about your facility’s needs and what improvements will help make wastewater treatment processes efficient and effective.

Industrial Screw Pump Manufacturers – What To Look For When Choosing Who To Work With

Your business and the machines within it are only as good as the people who work alongside them. That’s why when you’re looking to invest in a project that requires an industrial screw pump and a partnership with its manufacturers, you want to ensure that you’re working with a company whose goals align with yours. A screw pump made by a reliable and trustworthy company will make your project easier from start to finish and beyond.  All you need to know is precisely what you’re looking for in a partner company and how to find it. Don’t be intimidated by the specificity of your need for a screw pump! No matter what the need, a potential business partner is a potential business partner, and partners of all stripes deserve the same basic research and respect.

Performing a Needs Assessment

Before you start choosing which industrial screw pump manufacturer you want to work with, you’ll need to perform a needs assessment in order to better understand what you’ll require of a partner and of your screw pump. Consider, of course, the screw pump’s function. Industrial screw pumps are used to move large amounts of water and other liquids from one area to another, thereby making it simpler for debris and the like to pass more easily through the system with which it is affiliated. The screw pump, then, prevents damage to the delicate parts by effectively separating reusable fluid from any solids that may have been included in the mix, be that inclusion intentional or otherwise.

Screw pumps are most frequently affiliated with water treatment plants, but they can also be used on a day to day basis in more engineering-oriented as well. As such, look for a manufacturer who specializes in the applications which most closely apply to your needs.

Location, Location, Location

While the modern age of technology has made it simpler to work with companies all over the world, you may still, when looking for a screw pump manufacturer, want to work with a company based a little closer to home. The installation of a screw pump inside your plant or business will require the attention and effort of dozens of outside employees, and if you’re working with a manufacturer who is located nearby or at a minimum offers service in your area, you’ll be able to meet these employees beforehand to ensure it is a good match.

If you’re feeling braver and find a manufacturer whose goals align with your own, even though they’re located a significant distance away, do what you can to try and meet with critical implementation team members in person. You’ll want to do what you can to treat your new screw pump partner like any other business partner. Communication and time spent face to face is key.

Reliability

It’s important to consider the reputation of your new partner alongside their location. If you find that local manufacturers are nearby but less than stellar in their work or product offerings, it’s natural that you may want to broaden your range. When searching for potential screw pump manufacturers don’t be afraid to ask a company representative about the previous projects they’ve worked on. Experience and reputation go hand in hand, and it’s especially important that your new partner makes good on both.

Communication

Having touched on communication already as a part of a partner’s location, it makes sense that the ability to frequently get in touch with a potential manufacturer would be important. There’s more to communication than that, though. When asking yourself, “What should I look for in a screw pump manufacturer,” you’ll want to ensure that you consider your potential partner’s ability to stay in touch with you. This means that an ideal screw pump manufacturer would not only get in touch while your screw pump was being installed, but that they would remain accessible after installation and offer on-going support and maintenance when needed.

Expected Schedule

Speaking of expectations: you’ll naturally want to have developed a schedule for yourself and your company by the time you start looking for a screw pump manufacturer to partner with. In your first meetings with a potential partner, it’s important to ensure that your workable schedules align. You will  want to consider the time it’ll take your potential partner to meet your needs for a screw pump. Outside of this, however, it’s important that your expectations of your partner’s ability to work and keep to a deadline are reasonable, and that their expectations of you are equally based in reality.

Estimated Price

Most importantly is your budget. When you start looking for a screw pump manufacturer to partner with, you’ll want a range of prices in mind so you can both pay your partner fairly and negotiate costs so that you remain in the black. Do your research. Find the screw pump manufacturers who work within your desired range and reach out to them to gather quotes regarding how expensive a partnership between the two of you may be.  Like all business partnerships, while price is important, make sure you are comparing apples to apples.  Experience and reputation often come at a premium.

Though their purpose may be complex, screw pump manufacturers are like any other manufacturer or business partner who you might start a partnership with. Make sure that your goals align, that your schedules remain flexible, and that you communicate with one another, and you’re likely to have the screw pump you need with little to no hassle!

Wastewater Treatment Compliance: Navigating Regulatory Standards

Wastewater treatment plants in the U.S. treat around 238 billion gallons of wastewater each week. In addition, about 20% of U.S. homes and businesses are on septic systems that have underground tanks and piping that work with the sand and bedrock to filter wastewater and capture solids in the tank to be pumped out every year or two. Any wastewater has an abundance of phosphorus and nitrogen from household cleaners, personal care products, and human waste. That’s a problem.

Nitrogen and phosphorus damage water ecosystems as they cause algae blooms and pollution that harms fish and other aquatic creatures. Plus, water that contains toxic blue-green algae is fatal to pets. To protect people and animals from contaminated water, wastewater treatment plants must comply with regulatory standards.

What Regulations Are There?

Water treatment regulations exist on federal, state, and city/town levels. It’s impossible to know exactly what the regulations that apply to you are going to be as it comes down to your municipality and the percentage of homes, businesses, industries, and type of sewer system. When it comes to the federal government’s regulations, you’re looking at these two areas.

The Clean Water Act (CWA):

The CWA includes federal regulations that wastewater treatment plants must meet. When they apply for a permit to operate, the EPA sets the limits that the plant must adhere to. If those levels are not met, the wastewater treatment plant must alert the EPA and face fines if the problem could have been avoided. Sudden floods are often harder to avoid, but planning in advance for record-breaking rainfall and storms is beneficial.

The regulations in the CWA are designed to get pollutants out of the water before it’s released into a lake, river, or ocean. Nitrogen and phosphorus are just two of the things that are treated. Wastewater also needs to have pollutants like cadmium, cyanide, lead, nickel, silver, etc. removed to the required levels. 

Different districts will experience different contaminants, and that’s why the EPA will set limits. A city that has an abundance of paper mills or meat processing plants will have different pollutants to one that only has banks, houses, and office buildings. To help with this, some wastewater treatment plants require industrial plants in their municipality to add their own industrial wastewater treatment plants for pre-treatment.

A city that has an abundance of restaurants will deal with more fats, oil, and grease (FOG) than one that is more industrial or residential. FOG is notorious for solidifying in sewers and pipes and merging with tissue paper and plastic wrappers, which creates costly blockages. For that reason, some wastewater treatment districts also require restaurants and food service industries to have grease traps installed in their kitchens.

Does your district also accept hauled septage? If so, you’re going to be getting trucks full of wastewater from septic tanks at homes and businesses. As a septic tank has pipes that release wastewater to the leach field, and solids and FOG remain in the tank, hauled septage will have a higher percentage of solids.

One more thing that is considered when issuing wastewater permits and regulations is what type of sewer system it is. A separate sanitary sewer only has wastewater from homes and businesses. Combined sewers combine a sanitary sewer with stormwater runoff. As they have to deal with an influx of water during a storm or when snow melts, these systems may experience more flooding than a separate system.

The Safe Drinking Water Act (SDWA):

Some wastewater treatment plants send their water back to a water treatment plant for a sustainable water system. It lowers the amount of water that’s drawn from lakes or rivers, which is essential in areas where droughts are common. For water treatment plants, regulations set forth by the SDWA come into play.

The SDWA requires water treatment plants to get arsenic, asbestos, lead, mercury, and microbials out of the district’s drinking water. The list of microbes is long and includes things like E. coli, giardia, and legionella. Treatment processes must target these and other regulated contaminants that states, cities, and towns may add. 

Water treatment often uses chemicals like chlorine to kill bacteria and parasites. That chlorine also must be filtered to get it to safe levels. Many districts must add fluoride for oral health, but it has to be at the right levels so water treatment workers have to test and ensure water is safe before it’s released to the public water system.

How Do You Make Sure You’re in Compliance?

A wastewater district manager needs to make sure regulations are followed, otherwise, fines and penalties are possible. This can be tougher than originally thought as weather patterns change and a flood can be devastating and lead to a sudden release of raw sewage. Proper measures are needed to prevent this. Use these tips to stay in compliance.

Analyze Flow Rates

Analyze the flow rates throughout the day. You’re going to have fluctuations throughout the day. Incoming wastewater may be worse in the morning when people are showering for work or school, but much slower throughout the day. After 5 p.m. when people come back home and cook dinner, rates increase again. 

As you learn when more wastewater comes in, make sure pumps and equipment keep up with those rates. You can do this manually, but it’s better to have an automated pump that adjusts for changes in flow rates. This is ideal during storms when there may be higher flow rates than usual because of rainfall coming in from stormwater drains.

Consider the Wastewater

What are you more likely to have coming in? If you are in a district with a combined sewer, dirt and gravel are going to come in whenever it rains and drains into the stormwater system. Gravel, dirt, and sand wear out components quickly, but a grit collection system continually washes and separates grit to protect your equipment. 

Embrace Technology

Technology is helpful when it comes to staying up-to-date on wastewater regulations. As the EPA adds new contaminants to the list, you need to quickly address those items within your treatment process. With advanced technology helping out, you’re in a good place to adapt to changes.

Add a SharpBNR system to continually monitor your wastewater treatment equipment and processes and adjust them automatically if anything is off. Before a catastrophe occurs, you’ll get the alert and can get to the plant to check on things. 

What’s Your Budget? 

Finally, you do have to keep your budget in mind. While government grants to improve the nation’s infrastructure are available, they may not cover everything. Sometimes, a low-interest loan is needed to make improvements within your wastewater treatment plant. 

Work with an expert in wastewater treatment to find the best improvements for the budget you have. Lakeside Equipment has been in business since 1928 and is ready to help you meet your wastewater treatment regulations and be prepared for future changes. Our team of engineers and plant operators have the expertise you need to run an effective, efficient plant.