All posts by admin-seo

Commercial Applications for Screw Pumps

Open and enclosed screw pumps are used in a variety of settings. They’re often found in wastewater treatment plants where they move sludge and fluids that travel in through sewer lines or from hauled septage. Screw pumps are also helpful in commercial applications, though people don’t always stop to think of the benefits of screw pumps in a commercial setting. Here are five commercial applications for screw pumps.

Beverage Industry

The beverage industry is the perfect example of a commercial business that benefits from screw pumps. Breweries, wineries, kombucha, canned/bottled coffee, and other beverage companies can move liquids around without damaging other components in the recipe. As screw pumps require little maintenance and have the option of a Sealed Precision Type “E” bearing assembly that has a sealed bearing that doesn’t require a grease pump or grease lines that could leak over time and contaminate the liquids the screw pump is moving.

For example, beer is made by heating crushed grains (malts) with water. The liquid sits to extract the malt and must be separated. Using a screw pump, the liquids and grains are separated. Grains can go to farms as livestock feed. The remaining liquid is boiled and flavoring hops are added in stages. That mixture cools and yeast must be carefully added. As you add the liquid yeast mixture, a screw pump can control the speed so that it’s evenly mixed. Kombucha and wine are also beverages that are fermented and may benefit from a screw pump.

In winemaking, a screw pump can move fluid. It also moves the denser items like the dregs that include grape skins and seeds. The screw pushes the dregs to a container and the remaining liquid is piped to fermentation vats.

Screw pumps can also be used in a large kombucha plant. The screw pump can help during the step where tea leaves are removed from the tea right before the tea mixed with the culture that grows the SCOBY for fermentation. After the kombucha is moved to a cooling vessel and flowers, herbs, and other flavoring ingredients are added, you could also use a screw pump as it’s moved to kegs for carbonation.

Chemical Plants and Oil Refineries

While centrifugal pumps have been considered the normal option for a chemical plant, screw pumps are ideal. One of the leading reasons is to keep costs down. Screw pumps are designed to handle liquids of different viscosities. A centrifugal pump has to lower the flow rate when pressure increases. That requires constant adjustment to prevent problems. Screw pumps don’t need to make these adjustments, so you’ll save time and money. If you look at some of the flow rates of Lakeside Equipment’s different screw pumps, you’ll see the variation.

  • An open screw pump can handle 90 gallons up to 55,000 gallons per minute.
  • A Type C enclosed screw pump can handle 540 gallons to 35,000 gallons per minute.
  • A Type S enclosed screw pump can handle 90 gallons to 10,000 gallons per minute.

Screw pumps are proving to be the best choice in the oil and gas industry. With more viscous crude oil coming in from countries like Canada, Latin America, and South America, it can take more work to move the oil from reservoirs to oil pipelines. With other styles of pumps, pressure changes required the pumps to be adjusted by the operator to prevent problems. Screw pumps can do this efficiently as they can handle different viscosities and changing pressures with ease. To maximize production, it’s important to work with an expert to help find the best type of screw pump for your refinery.

Food Processing

How could a screw pump be useful in food processing? When food processing requires delicate speeds to prevent over-mixing or adding items too quickly, a screw pump is ideal. A canning company needs to get diced tomatoes into a canning line without pumping the tomatoes so quickly that the tomato pieces get broken down. That’s one area where a screw pump is helpful. It moves the tomato mixture at the right speed to prevent damage to the tomatoes. Steady flow rates keep lines running effectively without much need for maintenance, which boosts productivity.

A cheese manufacturing plant is another example. Milk is trucked to the plant and pumped into the storage tanks before pasteurization. To make the cheese, the curds and whey have to separate. After this happens, whey is pumped away and curds move to the machinery that shapes them into a block or round of cheese. Throughout this process, screw pumps help move liquids or curds to the next step in cheesemaking.

Screw pumps can also help move the whey that’s left behind. Liquid whey is used for animal feed. Whey can be dried into a powder and used as a protein supplement and in baby food. It can be used in bakeries or added to foods like soups and salad dressings. Whey protein powder is a hot commodity, but you need an effective way to pump it to the tanks where it’s stored until it’s needed.

Paper Mills

The pulp and paper industry requires several screw pumps throughout the process. At the very beginning of the process, wood is stripped of its bark and chopped into tiny fragments that are soaked in a mixture of water and chemicals to help digest it. The resulting pulp has to have most of the liquid removed before it moves to bleaching and washing. After washing, a new round of water removal takes place. The pulp goes through a refining process before heading to the paper making presses and drying area. Each new step that requires the separation of liquids benefits from a screw pump.

Eventually, the resulting liquid (liquor) has to be purified. The water left over after paper is made often go into ponds or tanks that use aeration to add oxygen and help with the water treatment process before it returns to bodies of water. The remaining sludge is often sent to incinerators.

Theme Parks

Theme parks across the country rely on screw pumps. Any theme park with a water ride needs a way to get water to the top of a ride or slide where it can plummet down the slide or track to the pool below. A screw pump is effective at moving large amounts of water continually. If you think about water parks where there are log rides in a flume, a screw pump is good at bringing water from the pool back up to the top of the ride over and over. The same is true of water slides and water rides where riders either use an inflatable tube or ride through the slide chute independently. If the water stops flowing, the ride goes wrong. It’s important to have low-maintenance screw pumps moving water non-stop from the bottom to the top.

Lakeside Equipment offers both enclosed and open screw pumps. Our first designs go back to the 1960s and have seen many improvements over the decades. With more than 50 years of expertise, we specialize in clog-free designs. You’ll work with an experienced team to match both your budget and specifications. Trust in us to design a screw pump for your industrial setting.

Screw Pumps for Sludge – How They Work and What You Should Look For

Screw pumps are designed to move liquids, solids, or liquid-solid combinations from one area to another. It’s a simplistic, yet effective, way to push liquids, sludge, grains, and other items along a chute or tube without clogging. Lakeside screw pumps operate at a constant speed, which lowers the chances of the machine needing maintenance or wearing out, making them a cost-effective piece of equipment. While these pumps can handle most everyone, one area where they’re very effective is pumping sludge.

Original Screw Pumps Go Back to Ancient Egypt

How do screw pumps work? One of the original uses of a screw pump was for agriculture and drainage. The screw pump set in water in a low-lying area and the top collection area sat in a higher area. As that screw twisted, water collected in the spiral tube and moved upwards to the collection area at the top. That brought water from a lower area like a river up a bank or slope to the garden beds or fields above.

The Egyptian Screw is believed to be the first screw pump and it was used to move water from the Nile River up the banks and to the villages and fields. While people know screw pumps as Archimedes screw pumps, evidence that Archimedes had any part of the invention is sparse. The pump was around for two centuries before Archimedes’ name is mentioned.

One of the first major uses of the Archimedes pump was in the 1600s when the Dutch used them to move water through dikes and canals. Windmills powered the screw pump bringing water from one section to another.

To understand how they work, imagine a long screw that’s sitting inside a straw. The bottom of that screw sits in a water-filled sink or basin. There’s a second bowl on the counter. The screw is turned at a steady speed. The threads of the screw are designed so that they hold liquid. As the screw turns, water collects in the threads of the screw and the upward movement of the screw pushes the water up the straw. The straw’s walls trap that water from escaping out of the bottom. Eventually, water propels to the top of the straw where it spills into the upper chamber.

What Factors You Should Weigh When Choosing a Screw Pump

A screw pump can move more than water. They can move oil and other viscous liquids like sludge. Sludge is a combination of fluids and solids that forms a thicker material like mud. Most sludge brought to water treatment plants comes from residential and business septic tanks where it’s pumped out and transported through trucks, but it can come from a variety of other sources. In an agricultural setting, screw pumps can move grains from a truck to a storage container. Sludge can also come from food and beverage plants like breweries, wineries, and dairy processors.

This is important when it comes to purchasing a screw pump. You need equipment that matches your intended use. Consider these factors when you’re buying a screw pump for sludge.

Open vs. Closed Screw Pumps

The screw pumps at Lakeside Equipment can be open or closed. This is important to understand as it can make a difference when you finalize your choice.

Open screw pumps sit in a trough that’s made of steel or concrete. The trough is open at the top, which exposes the spiral screw to the environment. The bearings are protected in a sealed sleeve or have a lubricating system that helps prevent wear whether they’re submerged or not. The trough needs to be at an angle of 22 to 40 degrees for the screw pump to work effectively. Given that incline, you do need a substantial amount of space when setting up this type of screw pump.

What are the advantages of an open screw pump? They can handle variable capacities without needing additional controls to manage the variation. They are efficient and don’t clog. There’s no need for pre-screening the sludge you get. Maintenance is low, and you don’t need a wet well to operate them.

What about enclosed screw pumps? There are two types: Type C or Type S. Both of these screw pumps are housed within a tube. A Type C is in a tube that can rotate. Type S’s tube is stationary. Type C is best if you need higher lifts than an open screw pump. It also requires less space as it can be installed to have a maximum incline of 45 degrees. Type S can pivot to keep up with changes in the pumping rate. It requires more space with an incline range of 22 to 40 degrees.

Benefits to enclosed screw pumps include higher efficiency with Type C. If the pump needs replacing, you can simply have the new pump dropped into place, which makes replacement much more affordable. With an open system, concrete and grout are needed. Enclosed screw pumps require no costly grouting or concrete work.

Flow Rate

How quickly do you need sludge moved? How thick is that sludge? Flow rates vary, and you need to make sure that the screw pump you choose can move the sludge as quickly as you need it moved. At the same time, look at the PSI and horsepower to make sure the system is going to work efficiently for you. We can help you with open screw pumps that move as little as 90 gallons a minute to as much as 55,000 gallons a minute. If you need an enclosed screw pump, the Type S is capable of 90 to 10,000 gallons per minute, and Type C handle 540 to 35,000 gallons per minute.

Size

How much room do you have? If you’re in a tight space, not every screw pump will work. When space is limited, the inclination of that screw pump needs to work with the available square footage. Imagine you have a screw pump that If you have plenty of room for the screw pump’s installation, you will have more options.

The open screw pumps manufactured by Lakeside Equipment range in size from 12 inches in diameter all the way to 144 inches. Enclosed screw pumps are available in 12 to 60 inches (Type S) and 24 to 120 inches (Type C). When you talk to our engineers, we’ll help you understand the pros and cons of open vs. closed screw pumps and which best suits your needs.

Durability

You’re spending money on a new or replacement screw pump. You want a system that’s designed to last. You want to get your money’s worth and that means a system that’s not going to require a lot of maintenance and upkeep. The screw pumps at Lakeside are designed to reduce friction that damages the screw pump’s parts. Very little maintenance is required to keep the screw pumps working like new.

Lakeside Equipment’s customer service team and engineers are ready to help you design and purchase the right screw pumps for sludge. Our screw pumps are made in the USA and give you the flexibility of open or closed designs. If you’re looking to replace or upgrade your equipment or are installing a brand new system, give us a call. We have decades of expertise that ensures you get the best system for your money.

How Lakeside’s Rotary Strainer Screens Are Used in Industrial Applications

Lakeside Equipment’s rotary strainer screens are used in far more than just wastewater treatment applications.  One area where Lakeside Equipment’s rotary strainer screens come in very handy is the food and beverage industry. A rotary strainer screen is often thought of as being an essential part of wastewater processing. It’s even more useful in breweries, beverage/coffee plants, and food processing plants. Beyond that, this equipment helps the fuel industry. If you have a liquid that needs to have all particles filtered out before reaching consumers, rotary strainer screens are an important part of the process.

How Rotary Screens Work

Lakeside’s rotary strainer screen is a self-contained unit crafted from stainless steel, which helps prevent corrosion. If you work with an acidic liquid like coffee, wine, kombucha, or hard cider, corrosion prevention is important. It’s designed to be installed on a concrete slab or an elevated structure if you need the equipment to be off the ground. Lakeside Equipment’s engineers can help you come up with the ideal design for your business.

The liquid is pumped in through the back of the rotary strainer where it flows through a rotary screen cylinder. The wire screening removes particles ranging in size from 0.10 inches all the way down to 0.010 inches After the particles are screened, the liquid continues to pipes that travel out through the bottom.

The solid particles that are caught on the screen are then scraped from the screen cylinder using a doctor blade assembly that adjusts using the blade tensioner. The solids are discharged through the chute on the front of the machine. An internal spray bar also helps keep the doctor blade and screening clear. Controls on the machine are automated, which makes it easy for your workers to operate.

What you do next with the solids depends on your food or beverage. Brewers can send spent grains to farms where they become feed for cattle and other farm animals. You could compost the leftover solids. Some may need to go to a landfill. The filtered liquid moves on to the next stage in your business. You might be sending the liquids to a tank, bottling line, or packaging area.

How Will Your Industry Benefit From Rotary Strainer Screens?

Many industries benefit from rotary strainer screens. When you have foods, fuels, or liquids that need to be screened to remove particles or contaminants, a screening system is perfect. Here are examples of different industries where a rotary strainer screen can be extremely useful.

When making beer, water and grains steep in a process called mash conversion, which breaks down starch from the malts into sugar. The malts have to be removed for the next step. A rotary strainer screen is perfect for this step and again when removing the hops before moving the wort into fermentation tanks.

The same is true of other beverages that have to be strained before fermentation, such as hard cider, cold brew coffee that’s canned for sale, and kombucha. Kombucha that has added ginger root, chai spices, or berries can be filtered using a rotary strainer screen. Once the kombucha is filtered, it travels to the bottling line before heading to stores or farmer’s markets.

A winery can use the rotary screening to remove grape skin, flesh, and seeds from the must (liquid pressed from the grapes). That must moves into fermentation tanks where yeast is added and the grape juice ferments. After fermentation ends, wine is moved to barrels for aging. If you produce hard cider, you’ll find the screens remove hops, spices, and other additions that you use for flavoring.

Do you can the cold brew coffee or bottle the iced tea you produce? Once the cold water and coffee grounds or tea have steeped, continue the process by having a rotary strainer screen remove the grounds or tea leaves. The tea or coffee continues to a bottling or canning line, but the filtered materials can go into a compost where it becomes beneficial to gardens.

Some poultry processing plants have found rotary strainer screens to be helpful when it comes to processing. During processing, poultry is continually cleaned using scalding water. That scalder produces the water that sprays poultry during feather removal and removing the innards. The scalding water collects all kinds of debris, which can be removed using a rotary strainer screen. Because the water is kept cleaner, the poultry is cleaner when it goes through inspections and packaging. This can keep costs down as you won’t use as much water as you would having to run poultry through several cycles of cleaning.

To make sugar, sugar cane is shredded and juice is extracted. That juice has to be screened to make sure fibrous material from the sugar cane doesn’t remain in the mixture when it goes to the heaters and surge or flash tanks before moving to evaporators where the remaining crystals are dried and become the sugar people see in stores. Other aspects of a sugar plant, such as making molasses, also use the rotary strainer screen to remove pulp. If you’re in the sugar beet processing industry, the same methods are put to use. In this case, the sugar beet pulp can be used to feed animals like horses.

Fuels like oil or gas cannot have any debris. If items like small metal shavings, dirt, or grit get into the fuel, it can clog lines and cause engine damage. Water is another issue. Chemical additions can help remove water from fuel or oil. Water’s removed and the rotary strainer takes out any particles before the fuel is bottled or moved into storage tanks.

Lakeside Equipment Can Help You

Lakeside Equipment started in 1928 to help towns and cities come up with water purification measures. We’ve expanded around the world. Our equipment is designed to last while helping you process whatever liquids your industry is responsible for producing. Whether you’re a brewery owner or produce oil for the automotive industry, our screening equipment helps you get the job done right every time.

How can Lakeside’s rotary strainer screens fit into your industrial applications? It all depends on your needs. Give us a call and tell us what needs screening. We’ll help you with your options and come up with the right design and installation.

How to Calculate Cost and Financing for a New Wastewater Treatment Plant

Water pollution is a key concern throughout the U.S. While many homes have septic systems installed for wastewater, homes nearer a city are often on sewers. All of the wastewater from pumped out septic systems or sewers goes to a wastewater treatment plant where it’s cleaned to remove bacteria that can spread disease. At that point, it can be returned to public water sources or into holding tanks where it goes back to homes and businesses.

If your municipality needs a new wastewater treatment plant, there are a lot of things you have to consider. Money is one of your primary concerns. If the system is too expensive, the taxpayers in your municipality may be unable to afford the increased taxes. If you cut corners, you risk having an ineffective system that’s prone to breaking down or failing to meet the capacity of wastewater that comes in each day.

You must understand how to calculate the cost and financing for a new wastewater treatment plant. You have to be honest about how much the system will cost, what the federal government will contribute, and why the cost is necessary. Here are the steps to calculating the cost and coming up with financing for a new wastewater treatment system.

Calculate the Size of the System That’s Needed

Several factors go into the size of the water treatment system you need. Is the water treatment system solely processing water that comes in from sewer lines? Or, are you also having a waste receiving system for trucks to bring in the sludge and fluids pumped from residential or business septic tanks? How many homes and businesses are in the district? You need to have an idea of how much wastewater would come into the plant each day.

The Raptor Complete Plant merges grit collection and screening into one unit, which can save room. However, it may not suit your needs. It can handle up to 4 million gallons per day. If the people in your municipality exceed this, you could run into problems. Per the EPA, an average family of four uses around 400 gallons per day. In a city where the popular is well over 10,000 people, this system may not be enough. This is why it’s important to look at your current population and how quickly the population is expanding. If you have businesses that are also adding to the wastewater totals, you need to factor in how much water they’d send into the sewers each day.

Decide What Wastewater Equipment is Needed

Once you have a general idea of what the plant’s capacity needs to be, you need to consider the design and structure. A wastewater treatment system covers three levels: primary, secondary, and advanced treatments. The equipment chosen to handle each level of water treatment must fit in the space you have and do the job at a level that meets federal, state, and local requirements. If the water being released back into the environment still carries pollutants, it can harm the ecosystem, animals, and even humans.

The primary stage involves the removal of suspended solids. Secondary treatment removes pollutants and finishes the removal of suspended solids. The advanced stage removes pollutants like nitrogen and phosphorus that are by-products of the other stages. Some systems only do the first two stages and don’t focus as much on advanced treatments, but changes to laws do occur. It’s better to come up with a comprehensive system that covers every treatment stage rather than omit and have to hurriedly add equipment years later. What type of equipment will you need?

  • Screw Pumps: Water treatment systems have the screw pumps that push water into the water treatment plant and move it from one stage to the next. There are open and closed screw pumps. Open screw pumps do not require much maintenance or a wet well and are very efficient. Enclosed screw pumps can reduce installation costs and offer a drop-in replacement.
  • Screens and Screen Rakes: Screens trap some debris before it moves to other pieces of equipment. Screen rakes clear that debris to ensure wastewater continues to flow. Screens can trap some of the items that don’t biodegrade easily, such as sanitation products, toys that are accidentally flushed by children, and paper towels.
  • Grit Collection: A grit collection system removes grit like sand that can cause abrasion, which damages equipment over time. Grit collection can also boost aeration and oxygen helps break down some bacteria.
  • Clarification and Filtration: Clarification and filtration systems stir the wastewater in order to help separate fluids from solids. Solids settle and can be removed.
  • Biological Treatment: The advanced stage of water filtration is the removal of nutrients like nitrogen and phosphorus that can cause serious problems in bodies of water like a lake. Those nutrients can cause algae blooms that threaten humans, animals, and fish.

Is There Financial Aid Available?

In the 1970s, the Clean Water Act found the federal government chipping grants that covered 75% of the installation cost for a new water treatment plant. The state helped with the rest. That program switched to a revolving loan program in the 1980s that partnered with federal grants of up to 55% This applied to municipal water treatment plants. Private ones or those that were part of an industrial setting were paid for by the business or landowner. Again, this changed in 2014 with the Water Infrastructure Finance and Innovation Act (WIFIA).

Through the WIFIA, eligible wastewater infrastructure projects are eligible for financial assistance through low-interest loans that can be paired with grants to cover the cost of a water treatment plant. WIFIA can cover up to 49% of a project’s cost, and federal assistance can bring the total to 80% of the project’s eligible costs. WIFIA loans are fixed-interest loans that remain the same for the life of the loan, even if some of the money is disbursed later on. The borrower’s credit or the structure of the loan doesn’t lead to higher interest rates. Deferred payments, customized payment schedules, and loan periods of up to 35 years all make the loan easier to manage.

Lakeside Equipment works with you to price, design, and install a new wastewater treatment system. Our team includes engineers, field technicians, and support personnel who help you with each stage of the planning, design, and installation. It’s our goal to set up a system that’s built to last and within your financial goals. It’s time to have a wastewater treatment plant that serves your community’s needs. Call 1-630-837-5640 to talk to our specialists.

The Top Challenges Facing Municipal Wastewater Treatment

Every year, municipal wastewater treatment plants do what they can to become more efficient. Efficiency helps keep costs down, which makes the district’s residents happy. At the same time, these plants cannot lose sight of the goal of cleaning wastewater to meet government standards. These are the three challenges municipal wastewater treatment plants face with tips on how to handle them.

Newer Contaminants Are Harder to Remove

Today’s use of medications like birth control and antidepressants has increased. Hormones are being found in aquatic creatures at alarming levels. These prescription medications are hard to filter from wastewater. Even with top-quality equipment a certain level of these medications gets through and is returned to water sources like rivers and lakes.

The U.S. Geological Survey studied fish located about five miles downstream of a water treatment plant. Silt and water samples were also taken. Several antidepressants were found in the water and silt. The same happened with the tissue samples they took from fish. One thing was concerning, the fish had typically had higher levels of the antidepressants than the silt or water did.

The same is being found with one hormone found in birth control pills. A Swedish study found ethinyl-estradiol in roach, salmon, and trout. The fish that tested positive for this synthetic hormone struggle with breeding, which can deplete fish populations. It could diminish the number of fish in the rivers and oceans, which reduces the amount of fish available for food.

Expanding Populations and Business Growth Are Straining Systems

Cities and suburbs are growing faster than many municipal wastewater treatment systems can handle. Many of the nation’s wastewater treatment plants were designed decades ago. They’re not equipped for today’s residential and business usage.

In Huntingburg, Indiana, the city’s wastewater treatment plan is designed for up to 2 million gallons per day. Right now, the average daily flow is 1.4 million gallons. There are tanks to handle overflow on days they happen, but a study found that those tanks could only hold overflow from a day or two. At that point, wastewater goes into lagoons where bleach is added and it’s mixed with treated wastewater and released. If excessive amounts of wastewater happened multiple days, it could be disastrous. Growth is an issue that the city is working hard to address.

Vermont is a state well-known for its craft brewing industry. Some independent beer makers are feeling the strain of older wastewater plants. In Morrisville, two local brewers are worried about the impact of new wastewater rates they face. These rates will cost the breweries upwards of $16,000 per year. Far more than they can afford, but the municipal wastewater treatment plant is overburdened by the wastewater coming from these breweries, too. Stowe’s Alchemist Brewery worked with experts to build their own wastewater system to lessen the load on their town’s wastewater system. It’s something more companies may need to consider.

Outdated Equipment Fails More Often and Uses More Energy

Older equipment does use a lot more energy than today’s models. Upgrading may cost some money, but the savings in energy bills quickly pays for the expense of upgrading equipment. Models are designed to run with minimal interruption and automatically adjust flow rates without the need for a person watching monitors and making changes.

Great Neck Water Pollution District spent $13 million on upgrades. It’s expected that the upgrades will result in $150,000 per year in heating costs and more than $400,000 in savings for utilities. In several years, the upgrades will have been paid off through those savings. It’s a win-win for both the residents and businesses in the area and the water treatment plant.

Other innovative upgrades to consider are systems that convert the gases produced during wastewater treatment into heating fuel for the plant. Some systems reduce energy costs by tapping into solar energy with the installation of solar panels. These are all ideas that municipal wastewater treatment plants are using to boost efficiency and reduce energy.

Upgrades can be affordable investments. Lakeside Equipment has a package headworks system that is pre-engineered and pre-assembled to reduce engineering, installation, and excavation costs. The stainless steel design lowers the risk of corrosion. You can have this cost-effective system customized to suit your needs.

We’re ready to help your municipal wastewater treatment plant boost efficiency and performance. We have parts available if your system requires repairs. Our engineers at Lakeside Equipment also help with plant upgrades and efficient, cost-effective designs. Give us a call and let us know how we can assist you.

The Three Most Difficult Items to Remove From Wastewater

Wastewater is the water that comes from homes and businesses through sewer lines or after a septic tank is pumped. It’s the water from toilet flushes, showers, washing machines, sinks, and dishwashers. As wastewater is filled with fecal matter, urine, household or commercial cleaners, soaps/shampoos, etc., it has to be treated before it can return to water sources or public water supplies.

While this is something wastewater treatment plants do every hour of the day, there are things that homeowners may not think of. Wastewater treatment can only do so much. Three items come from homes and businesses that are very difficult to fully remove from water.

#1 – Pharmaceuticals and Personal Care Products (PPCPs)

Both prescription and over-the-counter medications and supplements are wreaking havoc on wastewater. Even if people dispose of their unused medications correctly, some of those medications make their way into the urine stream. That urine ends up in a water treatment plant where the medications do not fully get removed. One study found that antibiotics and synthetic hormones (birth control) were being found in water sources and the fish living in those rivers and lakes.

It’s found that a secondary wastewater treatment process is still only able to remove a maximum of 95% of the estrogen. Antibacterial soaps that contain triclocarban are even worse. Scientists found that only 25% of the triclocarban in wastewater was removed by the end of the process. Not only are these drugs and chemicals ending up in bodies of water, but there is also the chance that trace amounts are in the water that goes back to homes and businesses. There are concerns that this may increase antibiotic resistance.

Many water treatment plants do not have the equipment needed to test for PPCPs. While scientists say trace amounts are not likely to pose a health risk, there still are questions regarding how to make sure a wastewater treatment plant removes as many PPCPs as possible. Systems with filtration and biological treatments are the best way to remove PPCPs. Older wastewater treatment plants could upgrade to help remove as many drugs and chemicals as possible.

#2 – Nitrites and Nitrates

Nitrates are used as a food additive in many cured meats. People consume them regularly in deli meats, bacon, sausage, and hot dogs.  As the body’s bacteria break down those foods, they convert to nitrite. Nitrites are incredibly harmful to bodies of water as they deplete oxygen and increase algae growth.

A wastewater treatment plant has to remove ammonia from the water it’s treating. Do do this, autotrophic ammonia-oxidizing bacteria help oxidize the ammonia, which leads to nitrite. The nitrite is then oxidized using nitrite-oxidizing bacteria, which turns it into nitrogen gas. It all takes energy to run the machines needed to complete the process. At that point, sludge is removed. There’s another process that uses anaerobic ammonia oxidation that cuts out a step. It’s effective and energy-efficient and by the end of it, only a small percentage of that ammonia has been converted to nitrate that gets converted to nitrogen gas.

#3 – Polyethylene and Polypropylene Microbeads

As early as 1972, plastic microbeads started popping up in many products. These tiny plastic beads gained popularity in facial scrubs, body washes, and other products used to buff away dead skin. They were even added to some toothpaste brands. As they are plastic, they don’t break down. The tiny particles of plastic get through water treatment and often end up in large bodies of water where fish and other aquatic creatures ingest or breathe them in. For this reason, the U.S. Government banned plastic microbeads starting in 2017. Manufacturers had to stop using plastic microbeads in their products from that point on.

Despite the ban, people were still able to buy the products containing polyethylene and polypropylene microbeads from retailers and discounters who still had the products in their warehouses. Not everyone understands the danger these plastic pellets pose to the environment. They’re still using them, which means those pellets that can be a fraction of a millimeter in size ends up in a water treatment plant. Wastewater treatment plants that use primary clarification have better success rates at removing microbeads, but the removal rate is still only an average of 87%. Some microplastics still get through.

Let Lakeside Equipment help you upgrade or install a wastewater treatment system that does as much as possible to remove these three difficult contaminants from the water you treat. Our wastewater treatment systems are designed for efficiency and automation. We’re happy to help you with everything you need from screening and trash rakes to grit collection and clarification. Give us a call and let us help you design cost-effective solutions.

Does Wastewater Treatment Remove Viruses From the Water?

One of the important goals of water treatment is to remove viruses. In history, there have been horrible viral outbreaks that were transmitted through water. One happened in 2016 in India. While the exact source was never determined, it was believed water from a hotel’s well was the source. More than 220 cases of hepatitis A were linked to the hotel and that the patients had all had ice or water or foods that were kept on ice from that specific hotel.

This leads to questions. Does wastewater treatment effectively remove viruses from public drinking water? One specific worry involves COVID-19. Does water treatment kill coronaviruses and other dangerous viruses like hepatitis and norovirus? Rest assured, water treatment regulations take viruses into consideration. Here’s what you need to know.

Protections Set by The Safe Drinking Water Act

The Safe Drinking Water Act of 1974 established stringent guidelines to help protect drinking water throughout the U.S. By definition, any water system that provides drinking water for 25 or more or that has 15 connections and provides that water for at least two months per year are considered public water systems. There are more than 150,000 public water systems in the U.S. All of them must meet the EPA’s national standards.

Microbial sources are part of the contaminants that water treatment plants must treat and test for. If the contaminant levels are high, boil water orders or other warnings must go out to people on that water system. The list of microbial contaminants is long, but it includes these common viruses:

  • Adenoviruses, such as pink eye or an upper respiratory infection like bronchitis
  • Calciviruses, such as norovirus
  • Enterovirus, such as coxsackievirus and poliovirus
  • Hepatitis A

Information regarding COVID-19 is still coming in, but at this point, the CDC believes that coronaviruses are not transmitted through the water. WHO has yet to find any trace of COVID-19 in drinking water supplies before or after treatments. While COVID-19 has been found in fecal matter, the water treatment measures like filtration and disinfection kill that virus just as it successfully kills other viruses. WHO states that any water treatment plan with “conventional, centralized water treatment methods which use filtration and disinfection” are enough to kill coronaviruses. It’s not something people need to worry about as U.S. wastewater treatment plants use filtration and disinfection.

What Does This Mean For a Water Treatment Plant?

Every step a water treatment plant takes to rid wastewater of other viruses is taking care of the less common coronaviruses like COVID-19, MERS, and SARS. If you look at the steps that most water treatments plant use, there are different stages starting with the moment the wastewater arrives until it returns to a body of water or public water supply. Think of a typical water pitcher system like Brita. Water flows into a reservoir where it slowly trickles through activated charcoal filters to remove odors, bacteria, and some other contaminants. That’s similar to the filtration process in a water treatment plant.

The same happens in a water treatment system. Wastewater comes into the plant where screens, clarification, and filtration equipment work together to clean the water. Filters or filtration materials remove other contaminants in one of two ways. One way is to place the activated carbon filters for post-filtration cleaning after the rapid mix, flocculation/sedimentation, and filtration steps before water moves on. The other way takes place in a filtration tank where the charcoal sits in the bottom of a tank and filters out contaminants and odors after rapid mix and flocculation/sedimentation.

While many water treatment systems use charcoal or activated charcoal, some may use sand, coconut fibers, or other materials to capture bacteria, viruses, chemicals, and parasites. This is the first of two important steps. The second step involves the addition of a chemical disinfectant like chlorine that kills any remaining bacteria, parasites, and viruses.

The two most common disinfectants used by a water treatment plant are chloramine or chlorine. Chloramines are a mix of ammonia and chlorine and have been used since the 1920s. Water treatment plants specifically use monochloramine, which kills germs without causing eye, respiratory, or skin irritation. Monochloramine is safe to consume.

Chlorine is also a top choice of water treatment plants. It was first used in a New Jersey water treatment plant in 1908. It’s a bleach that can be harmful in high doses, but the amount that remains after processing wastewater is minimal and considered safe to consume. UV and sunlight help remove the excess chemicals used in the water disinfection step.

Avoid Frequent Repairs or Equipment Failures Through Plant Upgrades

One issue water treatment plants have seen with COVID-19 is the increased use of paper supplies other than toilet paper. With toilet paper shortages, people started using tissues, paper towels, baby wipes, and napkins in place. Public awareness campaigns are essential to keeping people from flushing these items into their septic systems or sewer lines. These items can cause blocked lines and put more strain on equipment. If you’re experiencing problems and need repairs, Lakeside Equipment does supply parts for necessary repairs.

Water treatment regulations change regularly as the EPA reviews the current list of contaminants every five years. To ensure your system is removing viruses and other contaminants, you must make sure your system meets the current regulations. When changes are made, we can help you go over your current system and see if any improvements are needed. If your old system needs a complete update, we have engineers available to design new plans that fit your space and budget.

Upgraded equipment helps a water treatment plant process wastewater effectively and efficiently. Replacing outdated equipment may cost some money upfront, but it also saves money in terms of electricity costs and repairs in the long run. It ensures you meet the current EPA regulations. Let Lakeside Equipment help you plan upgrades that make sense for your water treatment plant and meet your budget.

What Is the Difference Between Wastewater and Stormwater?

You probably understand the basic differences between wastewater and stormwater. It can be harder to understand the differences in how they are handled within a town or city setting. Stormwater may eventually make its way to a water treatment plant, but it’s not through the sewer as you’d imagine. Wastewater is handled differently. It is not meant to get into bodies of water without first being treated.

What is Wastewater?

Wastewater is the liquid that comes from showers, washing machines, sinks, toilets, bathtubs, dishwashers, and other items that handle dirty water. That water travels through pipes into a sewer or septic tank. If it goes into a septic tank, an effluent filter keeps solids from getting into the pipes and creating blockages in the pipes leading to the leach field. The water that goes to the leach field filters naturally through the soil, sand, and bedroom before going into underground water sources. The remaining sludge and solids stay in the tank where it must be pumped out every three to five years, depending on the number of residents, and trucked to a plant.

For homes and businesses within a water district that has sewer lines, the water travels through the sewer lines to the sewer system. There it travels to that district’s water treatment plant.

It doesn’t matter if that wastewater gets there through sewer lines or is trucked in by companies that drain business and residential septic tanks. That wastewater goes directly to the wastewater treatment plant to be cleaned before it’s released to a body of water or into storage tanks.

What is Stormwater?

Stormwater is rain, snowmelt, and ice melt that occurs after a storm or on a warmer day in the winter or spring. In a rural or wooded area, that water is typically absorbed back into the ground. In a city, you have pavement and concrete that prevent the water from reaching the soil. It has to go somewhere, so storm drains, ditches, and pipes help handle the water.

People see storm drains in a city and assume it all winds up in a sewer. The reality is that there are different systems in place to handle wastewater and stormwater. After a storm or sudden snow/ice melt, the water you see flooding into a storm drain goes into a drainage system that returns that untreated water to rivers, lakes, streams, and ponds.

One of the problems with untreated water going into a body of water is that it hasn’t been cleaned. That water can pick up contaminants like road salt, vehicle fluids, trash, and agricultural fertilizers and pesticides and end up in the water. This triggers an adverse reaction by causing things like algae blooms to take over and pollute a water source. People should take precautions to prevent these contaminants from getting into storm drains or ditches.

There is that chance that the river, lake, pond, or another body of water feeds into a water treatment plant. For example, if your city draws water from the nearby lake to be used as water in public businesses and homes within the water district, the stormwater that travels into that lake would eventually reach the water treatment plant. There, it would be cleaned, treated, and eventually make its way through pipes to homes and businesses.

What Happens at the Water Treatment Plant?

Collection and pumping are the first stages of a water treatment plan. Sewage is collected and cleared of large objects through screens. The size of the screens will change to trap smaller and smaller items. After this, it is allowed to settle in a grit chamber where sand and other fine particles are allowed to settle. They’re removed and taken to a landfill.

The wastewater moves to tanks where the sludge and solids settle and removed. Depending on the water treatment plant, that sludge and waste may end up in a plant that heats it to kill the bacteria and process it into fertilizer. The remaining wastewater now moves into a secondary treatment. At this stage, oxygen is added to the remaining wastewater to encourage microorganisms to use up the remaining waste. By the time this process ends, as much as 90% of the waste and chemical pollutants are gone.

What remains is disinfected with chemical agents and processed further to make sure the chemicals used to sanitize the water are below the levels recommended by the government. Some wastewater treatment plants use UV lighting to help with this process. Once the water is safe for reuse or bodies of water, it travels to water storage tanks where it ends up at area homes and businesses or it is piped into the lake, river, stream, etc.

Would you like help coming up with a wastewater treatment system that helps protect your district? Does your inefficient system need upgrading? Lakeside Equipment has decades of expertise in designing and installing efficient, cost-effective water treatment systems. Give us a call or send an email to learn more.

How to Evaluate Wastewater Treatment Manufacturers

With so many wastewater treatment equipment manufacturers, how do you know which company is best? What makes one company better than all of the rest? Use this guide to help decide how to choose the wastewater treatment manufacturer and equipment that will best suit your needs and budget.

Study the Local, State, and Federal Laws

Before you even start calling wastewater treatment manufacturers, you need to come up with an exact list of your plant’s needs. Start by looking at the local, state, and federal laws that apply to the water you’re treating and either sending back to homes or into a body of water.

In addition to the laws, pay attention to the fines you face if you get something wrong. If your equipment can’t handle the flood of water coming in after heavy rain and some effluent is released into a body of water without being properly treated, you face fines. Those fines could negatively impact your water treatment plant.

What Wastewater Are You Cleaning and Treating?

Once you understand the laws, think about the wastewater you’ll be treating Have you completed a study of the wastewater you’ll be treating? This is necessary if you want to have the best understanding of the wastewater contaminants. Are you going to be cleaning storm runoff more than waste pumped from residential septic systems? Are you going to process a lot of residential septic system waste? Will you have wastewater coming from industrial plants or is it mainly residential? Is the wastewater from a restaurant district going to leave you treating a lot of oily water? Is the water loaded with inorganic contaminants?

Knowing the type of wastewater is going to help you in the long run. If you’re getting water from septic systems or sewers that may have items that must be removed, such as tampon applicators or condoms, you’ll need screens and trash or screen rakes to get these items out of the way before they cause problems farther down the line. Wastewater coming in from street runoff will have stones, small branches, and trash that also needs to be removed.

Picking the Best Wastewater Treatment Manufacturer

Once you have decided what equipment is needed, you need to narrow down your choices for manufacturers. You’ll have a budget, so the cost is going to be a driving factor. You don’t want too cheap. Saving money doesn’t always mean you’re getting equipment that lasts, just as spending more doesn’t guarantee a lifetime of dependability.

Look for manufacturers who sell wastewater treatment equipment where the moving parts are not submerged. This can cut maintenance costs. If the parts are never exposed to water, they’re not likely to degrade due to corrosion or mineral build-up from the water. They’re also not exposed to grit.

You need to consider the space you have. For example, when it comes to a grit collection system, Lakeside’s SpiraGrit Vortex Grit Chamber needs less space than the Lakeside Aeroductor. You’ll have effective equipment without overcrowding your site.

Ask the companies on your shortlist to share wastewater treatment plants they’ve designed and installed. If you can see photos of completed projects and read reports of the water quality, cost-effectiveness, and flow rates, it can help you see that the water treatment results you want can be a reality.

Finally, look at the wastewater treatment manufacturer’s history. A company that has decades of experience is going to be more knowledgeable than someone just starting out. An established company is going to have a large network of distributors available so that you don’t have to wait for parts or equipment to be available.

Choose Wisely and You’ll Have an Efficient, Effective System

This all takes time and has to be carefully planned. If you take the time to consider these factors, you’ll have the best possible insight into the type of wastewater equipment you need. It helps you avoid fines down the road from an inefficient system. You also have a system that is cost-effective as it will be designed to last a long time while being energy-efficient and need little maintenance.

Back in 1928, Lakeside Equipment Corporation was founded to help North American municipalities and companies establish water purification systems. The focus has always been on providing systems that efficiently and effectively clean and treat wastewater so that it’s safe, clean water for people to consume or so that it can be returned to natural water sources without fear of introducing bacteria and contaminants.

We’ve had close to a century of experience in wastewater treatment. We know how to evaluate a wastewater treatment manufacture and make sure our customers are choosing the right equipment for their budgets and water treatment needs. Give us a call and let us know how we can help.

Why is Wastewater Treatment Important?

Wastewater treatment is critical to survival. As places face droughts and water sources dry up, questions turn to where are people going to get the water they need for cooking, laundry, showers, and hydration. Taking the water households and businesses use, cleaning and treating it, and sending it back into water sources, homes, and businesses is crucial.

The Realities of Water Usage

Around the world, there’s a problem that not every household stops to consider. In the U.S. alone, the average family uses around 300 gallons of water each day. Dishes, showers, toilet flushing, and laundry use the bulk of your water each day. Meanwhile, population growth is causing water usage to increase. The U.S. Geological Survey reports that water withdrawals in the 1950s were around 175 billion gallons per day. Fifty years later, water withdrawals neared 300 billion gallons per day.

While demand increases, the amount of rainfall and snow remain pretty level. You don’t see increased rainfall each year. Some years have more rainfall than others. Some areas see droughts that last for months. This puts a tremendous burden on water bodies that are used for public water.

Location Impacts Usage

A person’s location also impacts water consumption. In a drier climate, people water lawns to keep the grass from dying. That drives up usage. Farms often use irrigation systems on their crops, which also drives up usage. In those regions, more water gets used. Rain and snowfall may not replenish public water sources fast enough.

Only Some Precipitation Makes it to Water Sources

Of the rain and snow that do fall each year, around 70% of it goes back up into the atmosphere through evaporation. A heavy rain or snowfall doesn’t replenish water as quickly as some may believe. If you get an inch of rain during a storm, only 3/10s an inch of that rainfall is going to return to the area’s bodies of water.

You should also consider how much water accumulates in a storm that drops an inch of rain. Over a one-acre piece of land, that amount of rain comes to just over 27,150 gallons of water. As around 70% goes back up into the atmosphere, that means that approximately 8,145 gallons make it to a stream, river, pond, lake, or other bodies of water.

While that may be okay if an inch of rain happened daily across the nation, it doesn’t. Some areas don’t experience rain more than a few weeks per year. Wastewater treatment is an essential part of recycling the water people use and returning it to the nation’s streams, ponds, lakes, rivers, and other bodies of water. Wastewater may also go into public water systems where it’s reused in homes and businesses.

Deteriorating Infrastructure Is Another Problem

Adding to the issues of public water systems is the deteriorating infrastructure the U.S. is experiencing. Roadways, bridges, and rail systems aren’t all that make up the infrastructure. The underground piping that brings water from a water treatment plant or water storage tanks to homes and businesses is also a big part of the problem. The EPA estimates that in the next 25 years, around $271 billion is needed to improve and maintain the current water infrastructure. It’s important to replace rusting, rotten water mains that break and lead to large leaks. Leaks in a person’s home or business also account to as much as 12% of the average daily water use.

We Need to Work Together

Homeowners and businesses should do their part by reducing consumption by fixing leaks, updating older appliances that are water hogs, and collecting water in rain barrels for watering gardens and lawns. Limiting the time spent in a shower and proper maintenance of septic systems also helps. Water treatment plants must also do their part.

Water treatment plants lower energy consumption and prevent leaks by making sure their equipment is updated before it breaks down. Newer equipment is designed for a long life and helps lower expenses. You can also add components that are automated for optimal performance. By working together, it helps ensure there is safe drinking water for everyone, and it keeps costs as low as possible for taxpayers.

When was the last time your wastewater district updated equipment to reduce energy consumption and improve efficiency? If it’s been a while, you need to talk to our experts. Lakeside Equipment has more than 90 years of experience with water purification. We’ll help you find upgrades that work for your community and are cost-effective options. Call us at (630) 837-5640 for more information.