All posts by admin-seo

Most Effective Commercial Sewage Grinder Pump System

A sewage grinder pump grinds the matter in wastewater to help it flow from a low spot to sewer lines. In a commercial setting, such as a restaurant, the grinder pump would work like a garbage disposal to grind up foods and items that go down the drain. The smaller pieces travel through pipes with a lower risk of creating a clog that could damage lines.

A grinder pump system handles things that get flushed down the toilet that shouldn’t be. If you have clients that flush baby wipes even though they do not dissolve, a grinder pump helps prevent clogs. Patrons may not realize that flushing a tampon applicator is terrible news for sewer lines. Your kitchen staff can put food scraps down the sink without causing blockages.

Meanwhile, the pump ensures the wastewater makes it up slopes and from low points. Imagine your restaurant is at the bottom of a hill, but the wastewater district’s pump station is at the top of the incline. If your building has any basement-level kitchens, laundry rooms, or bathrooms, a grinder pump helps process the solid waste with the wastewater. From there, the pump pushes it up and to the sewer lines.

Pumps push the water so that it moves in the right direction and don’t backflow into your sinks, toilets, and drains in the lowest point of your business, costing you hundreds or thousands of dollars to sanitize and clean surfaces.

Tips for Choosing Sewage Grinder Pumps

Choosing the best commercial sewage grinder pumps comes down to your needs. A sewage grinder pump needed in a large building with multiple office spaces will be far different from a pump required in a food processing company. Restaurants, bars, and hotels are other businesses that benefit from commercial sewage grinder pumps. These are the things you need to consider when you start researching your options.

#1 – The Motor’s Horsepower

A commercial sewage grinder pump will be different from a sewage grinder pump you’d use at home. It handles more wastewater, so the pump needs to be equipped to handle the higher capacity. Many residential grinder pumps range from 0.5 HP to 1 HP and have an RPM of around 3,000. A commercial grinder pump has a more powerful motor that’s often 2 HP or higher, and the RPMs usually are in the area of 3,500.

In a building with multiple bathrooms or kitchens, this is important. A pump with less power is more likely to become overwhelmed and need repairs or replacement. You have to make sure you’re installing a pump that can meet your wastewater demands. The right size pump lowers your maintenance and repair costs over time.

#2 – The Grinder’s Revolutions Per Minute (RPM)

Higher RPMs help the pump grind solid materials into a slurry. The faster it does this, the better it is to prevent backups or clogs. If you own a brewery with its own small wastewater treatment plant, you’d need a grinder pump that can handle any grains or hops that make it through filtration.

#3 – The Max Flow Rate

Check the pump’s max flow rate. If your business has upwards of 100 gallons of wastewater each minute, you want a pump that handles that much sewage. You’ll know this by the max flow rate that’s given in terms of gallons per hour. If it can handle 6,340 gallons per hour, it would manage an average of over 100 gallons per minute.

#4 – The Pump’s Construction

How does the pump work? For a commercial sewage grinder pump, you may need a control panel setup. Otherwise, systems use a float to turn the pump on and off when needed.

Check the grinder pump’s discharge design. Most have a vertical pipe that comes out of the top. A vertical design is often ideal. Ensure you have this type over a horizontal discharge requiring a 90-degree pipe section for the wastewater to travel upward.

You also need to look at the type of materials the grinder pump is made from. Many have cast iron bodies with stainless steel cutters to grind the materials into small pieces. You want a clog-free design on the impeller. Look for oil-filled, sealed motors that don’t require a lot of maintenance.

#5 – Head Height

Look at the head height. Head height is the distance (vertically) from the lowest level of the wastewater at the pump to the high point where it exits the building for sewer lines. Sewer lines usually run from the building into the sewers at the lowest level of a building. In some constructions, this means you’re sending water from the top floor to the basement and out of the building to the sewers.

If the head height offers a lift of 20 feet, but your basement or lowest area is 30 feet below the drainpipe, the head height is not sufficient. The pump needs to be powerful enough to push the water up and away from your building. If the head height is lower, the lift will not be as great, so it will struggle to move the wastewater.

Know Your Local and State Codes

A commercial sewage grinder pump system may even be required in your city or district. And it has to follow the rules outlined in city or state legislation. For example, where sewage pumps are necessary for “backwater protection” in a Wisconsin business, the grinder pump has to have opening and discharge piping diameters of no less than 1.25 inches.

It’s up to you to make sure you’re meeting those laws. The best way to ensure you comply is by working with an expert in wastewater equipment and design. Meeting your budget is essential, but it’s not always the best path forward if it means you’ll be fined or shut down for ignoring these codes.

Have You Considered Screw Pumps?

If your company is larger, screw pumps may suit your needs. There are both open and enclosed screw pumps available to help move wastewater up slopes. No matter which you select, they’re designed to avoid the need to grind solids as they do not clog.

Open screw pumps can handle 22 to 40 degrees inclines, and they do not clog, so screens are not needed. A benefit to the open screw pump is that it can handle anywhere from 90 gallons per minute to 55,000 gallons per minute with lifts of up to 50 feet per stage. Maintenance costs are low, too.

You also have enclosed screw pumps where the screw pump is hidden inside a steel tube. Type C enclosed screw pumps move anywhere from 540 to 35,000 gallons per minute at lifts of up to 60 feet. A Type S enclosed screw pump handles up to 10,000 gallons per minute with a lift of up to 30 feet. You can talk to a screw pump expert to learn more about the pros and cons of these systems when compared to your needs.

Lakeside Equipment Corporation has been a leader in water purification equipment and designs for more than 90 years. We’ve been designing screw pump systems since 1969 and have the expertise you need to ensure you meet codes. Call our customer service team at 630-837-5640 to learn more about using screw pumps for your sewage pump needs.

Choosing An Industrial Sewage System For Your Business

Residential or domestic sewage is the wastewater that leaves a resident’s home or apartment complex. It’s the wastewater from a flushed toilet, washing machine, sink, or dishwasher. While it does need to be treated, it’s generally easier to treat than industrial sewage.

Industrial sewage also contains the wastewater from bathrooms and sinks, but it is harder to clean because it also includes the wastewater from manufacturing processes. For example, a poultry processing plant will have toilets for the staff to use, but there’s also the wastewater from the solutions used to wash the chickens before butchering. It has the wastewater from the butchering process that contains blood, feces, and feather, bone, and skin particles.

According to OSHA, poultry processing plants may use ammonia, chlorine, dry ice, hydrogen peroxide, and/or peracetic acid. That wastewater puts a strain on local wastewater districts, so connecting to sewers may require your plant to treat the wastewater first. If you don’t, you could cause damage to the environment or face fines. To do this, you have to consider the best industrial sewage treatment system for your needs.

What Industries Need Sewage Systems?

Food processing plants are one example of an industry that needs a wastewater sewage system. There are others. Generally, if a business creates large quantities of wastewater, a water treatment system is required. Agriculture, breweries, paper and pulp mills, steel plants, the oil and gas industry, pharmaceuticals, and textiles are examples of other industries that need wastewater treatment systems. Here’s why it’s essential.

  • Agriculture – Chemicals like herbicides and pesticides, fecal matter, and the fats and sugars in milk.
  • Breweries – Chemicals used for sterilizing processes, the grains and sugars, and water used for rinsing the hops and grains.
  • Food Processing – As mentioned earlier, fecal matter, blood, bones, and skin, plus growth hormones and antibiotics.
  • Iron/Steel Plants – Oil, cyanide, and ammonia are just a few of the contaminants.
  • Paper/Pulp Mills – One ton of paper uses more than 15,000 gallons of water to make, plus there are bleaching agents, acids, hydrocarbons, etc. to consider.
  • Pharmaceuticals – Drug waste is mixed into the water.
  • Textiles – The clothing industry relies on materials of all colors, so bleach and chemical dyes are in the wastewater from textile plants.

The first step within an industrial wastewater treatment plant is to remove any solids through sludge removal. After that, any grease and oils need to be removed. Organic matter is also removed. At this point, any alkalis and acids are neutralized, and heavy metals are also removed. Chlorine and remaining contaminants are removed through membrane filtration.

It all comes down to the wastewater your company generates. You might need a sewage grinder as part of the process if you have a food processing plant. Other plants may not require it. Working with an expert in industrial wastewater treatment plants is important to ensure you have a system that works effectively, within your budgeted operating costs, and is easy to maintain.

What Are Your Options?

Lakeside Equipment has two package treatment plants if you want an affordable wastewater treatment system that’s ready to go. You have two options: E.A. Aerator Plant or Packaged Extended Aeration Plant.

The Pros and Cons of an E.A. Aerator Plant

To better understand the reasons to choose the E.A. Aerator Plant, it helps to look at what it does and when it’s the best choice. This plant includes a concentric (rings within rings) design with a Closed Loop Reactor in the outer loop and a Spiraflo Clarifier in the inner circle. You can add a second channel for seasonal variations, extra capacity, or more efficient biological nutrients removal.

The Closed Loop Reactor (CLR) aerates the wastewater before it goes into the next ring, where the Spiraflo Clarifier allows the sludge to settle. CLR is done using the Magna Rotor Aerator for fuss-free operation with low maintenance costs. It also is an easy system for workers to operate. The Spiraflo Clarifier offers an optimal hydraulic flow that maximizes performance.

The E.A. Aerator Plant is an in-ground concrete design. A mixture of concrete and steel or just steel are other options.

Pros:

  • It offers greater aeration without driving up energy consumption in low-flow conditions.
  • It has a space-saving design.
  • There’s flexibility in the number of rings in the final design.
  • Replacement and service are easy to manage as standard parts are used.

Cons:

  • It’s not as effective if flow rates are higher than 0.5 million gallons per day.
  • Screening is not part of the system.
  • It takes up some space, making it less ideal in a smaller plant.

The Pros and Cons of a Packaged Extended Aeration Plant

Your other option is the Packaged Extended Aeration Plant. It is a pre-engineered system fit within a steel tank that contains screening, diffused aeration, clarification, disinfection, and sludge holding. There is the option of installing it within a concrete structure if that’s preferred.

The Packaged Extended Aeration Plant contains everything in one, making it a powerhouse in a smaller plant. The wastewater is screened to remove items that might otherwise cause clogs. From there, it is aerated and clarified before going through disinfection. All of the sludge goes into a steel chamber for easy removal.

Pros:

  • Screening is an integral part of the system.
  • The compact steel design is ideal for small plants.
  • Easy to install as it’s an all-in-one system.
  • It’s optimized for hassle-free operation with minimal staffing.

Cons:

  • It’s not practical in larger plants.
  • If a concrete structure is preferred, the components are shipped and installed on-site.

What if those are not suitable options for your needs? Consider a custom design. You might need screening as part of a more extensive wastewater treatment system for your factory. You need to have grit removal as a significant part of the process. These pieces of equipment may not be necessary, but you need careful filtration of heavy metals. A custom industrial sewage treatment plant is often the best bet for your business.

Planning Your Design

Your industrial wastewater treatment plant must meet your needs, but there’s much more to it than that. You have to know your district’s regulations. You may be required to complete a wastewater treatability study before taking the first steps.

If you have a poultry processing plant, you’re going to have to account for the biological hazards, fats, and bone fragments. In comparison, a company that cures hides for leather coats needs to consider all chemicals, hairs, sand, and animal fats going into the wastewater.

You have to look at your plant’s energy consumption, too. Your local power plant may not want you to use excessive amounts of energy, which means looking into ways to cut electricity and gas consumption. A wastewater treatment plant that can retain some of the gases for bio-fuel is optimal for your needs. We get it, and we’re happy to help you understand your options.

Lakeside Equipment has a full line of wastewater treatment products for industrial sewage. Our engineers are happy to work with your team to develop the ideal design that matches your budget and goals. We have screw pumps, screens, trash rakes, clarification and filtration, and biological treatment.

Talk to our engineers about your industrial wastewater needs. We’re with you every step of the way, from planning to installation and repairs that become necessary years or decades down the road. Give us a call.

How Does a Grit Removal System Improve Your Plant’s Bottom Line?

When people think of the bottom line, they’re factoring in their expenses versus their revenue. Wastewater treatment plant owners usually think about the “triple bottom line” (TBL). The plant’s bottom line covers more than financial aspects. They also must think about the world and community they’re part of. The TBL theory covers:

  • Environmental
  • Financial
  • Social

With a TBL theory, they’re maximizing revenues, protecting the environment, and making the people in their district happy. As a plant manager, you have to carefully work within the municipality to ensure the water treatment steps provide safety for your workers, meet the EPA’s guidelines for water before it goes back into the environment, keep costs down for the community, and meet the increasing flow rates. That is your TBL, and a grit removal system is a vital part of meeting your bottom line.

What Is a Grit Removal System?

Grit includes abrasive materials like coffee grounds, sand, gravel, and small bone fragments. To get them out of a wastewater treatment plant’s equipment, you need to have machines that wash, collect, and remove the gritty particles. Why bother?

Wastewater and stormwater runoff contains gritty materials that impact the performance of valves and pumps. Imagine the impact of sandpaper rubbing back and forth on rubber, plastic, or metal all day, every day. It would wear out in little time. The same is true of your wastewater treatment plant’s valves and pump components.

All of this grit also builds up in lines, channels, and tanks, which reduces flow rates and capacity. To resolve these costly issues, a grit removal system is imperative.

Grit removal systems are set up to filter wastewater and storm runoff as it comes into a treatment plant. How it does this job depends on the equipment. A vortex, aerated, or circulating system stirs or pumps air into the water. The idea is to get the grit to sink to the bottom, where it is pumped into equipment to be rinsed and moved to containers for removal.

  • Aerated Grit Chambers – Pump air into the water to stir it up so that heavy grit sinks to the bottom.
  • Cyclonic Grit Chambers – Water enters in a way that forms a cyclone that pushes heavier grit to the bottom.
  • Horizontal Flow Chambers – Water flows horizontally to allow heavier gritty materials to sink.
  • Vortex Grit Chambers – Paddles stir the water to allow oils and fats to rise to the surface while grit sinks to the bottom.

The system you choose depends on your plant’s size and needs. Some grit removal systems take more space than others. If you have a small plant, a larger piece of equipment might not fit your needs. You also must consider your flow rates, capacity, and amount of grit that’s typically in your municipalities’ wastewater or stormwater runoff.

How Does Grit Removal Help You Meet Your Bottom Line?

How does removing grit help your bottom line? Think about the amount of wastewater and storm runoff that come into your treatment plant. The average person uses upwards of 100 gallons of water daily with showers, laundry, oral hygiene, dishes, and toilet flushes. A wastewater treatment plant often has thousands of people in its district. The median number of gallons that are treated in a wastewater treatment plant each day is around three million.

Of those three million gallons, the average amount of grit is upwards of 45 cubic feet. Imagine all of that grit rubbing against the components in pumps and valves. If it’s not filtered out early in the process, it can cause costly damage. Not only are you paying for new components to make the repairs, but you’d also have the machine’s downtime for the repairs. That cuts into the financial component of your TBL.

When you remove grit, you make your district members happier. You’re not wasting money on frequent repairs and replacements caused by damage from the grit. You’re also protecting the environment by ensuring your equipment is doing its job and preventing the accidental release of raw sewage caused by equipment failures.

Lakeside Equipment’s Options for Grit Collection and Removal Systems

Whether you need to replace old, ineffective grit collection and removal systems or want to add efficient equipment to your wastewater treatment plant, Lakeside Equipment has a selection of options for you. Take a closer look at your choices.

Aeroductor Grit Removal System

The Aeroductor Grit Removal System uses air to move the water vertically to allow grit to settle to the bottom of the grit hopper. Grit is pumped out using an airlift pump, dry-pit vortex pump, or self-priming pump. Benefits are:

  • Aeration helps kickstart the treatment process.
  • Energy costs are lower.
  • Flow rates don’t matter.
  • Grit comes out cleaner as it’s separated and dewatered simultaneously.
  • No parts are underwater, and no buckets, chains, or augers are needed, so maintenance is easily managed.

H-PAC

H-PAC combines the Hydronic T Screen and SpiraGrit Vortex Grit Chamber. It screens trash and grit at the same time at rates of up to 12 million gallons per day. It doesn’t take a lot of space, making it a popular choice in smaller plants. Benefits include:

  • It costs less due to the pre-engineered design.
  • Multiple screen options meet your exact needs.
  • Stainless steel construction helps with corrosion prevention.

In-Line Grit Collector

With the In-Line Grit Collection, flow rates of 0.25 to 6 million gallons per day are possible. It works by having wastewater come into one end of the tank, flow under a baffle, and pass over a weir. Grit sinks to the bottom of the tank, where a dewatering screw dewaters it and moves it to an awaiting dumpster. Benefits include:

  • It’s an easily-installed and cost-effective grit removal system.
  • Maintenance costs reduce as there is little mechanical equipment and no buckets or chains.
  • The screw conveyor doesn’t wear out due to the grit, and a direct drive speed reducer also lowers maintenance and repair costs.

SpiraGrit Vortex Grit Removal System

The SpiraGrit Vortex Grit Removal System is designed for sites with limited space. It’s ideal for fluctuating daily flow rates. It works by having paddles stir the flow in a vortex chamber. Organics remain suspended while the grit sinks to the bottom to be pumped using an airlift, recessed propeller, or self-prime pump. From there, it goes to a Grit Classifier or Grit Washer. Benefits include:

  • Bearings are all above water for easy maintenance.
  • The grit chamber head loss is minimal.
  • Impressive grit removal rates regardless of the flow rates.
  • Stainless steel construction is available to prevent corrosion.

You also want to consider a Grit Classifier and Raptor Grit Washer. Grit that comes from wastewater soaks up some of the water. To collect that water, you want to invest in a grit washer or grit classifier. These systems work to remove water from the grit slurry.

A Grit Classifier spins the slurry in a cyclonic pattern to force the grit against the chamber’s walls while the water leaves through the overflow pipe. The screw pumps with this system are designed to resist wear. Upgrade to stainless steel construction to prevent corrosion.

Raptor Grit Washers work similarly, using centrifugal force to remove water. It can get the grit to a dry rate of 90%.

Reach out to Lakeside Equipment to learn more about the options for grit removal. Find out how the right grit removal equipment will help you meet your wastewater treatment plant’s bottom line.

How Can Automation Help Your Plant Streamline Wastewater Treatment?

Have you ever considered the benefits of automation at your wastewater treatment plant? Streamlining treatment processes is essential in today’s world. Getting water clean and returned to homes, businesses, and bodies of water needs to happen quickly.

Wastewater treatment is an essential industry in the U.S. While it’s hard to imagine running out of water, it’s possible. Changing weather patterns are finding temperatures heating up, and some areas see very little rainfall.

How can the nation protect the one thing people need to survive? Wastewater treatment is one of the most critical steps. Instead of losing valuable water to environmental factors like evaporation, municipalities can clean the water, move it to storage tanks and ponds, and send it back out to homes and businesses for reuse. Automation can help streamline wastewater treatment processes like this.

Parts of the U.S. Face a Water Crisis

So much of a person’s daily routine involves water. Washing hands to lower the risk of disease is only part of it. Showers, toilet flushes, and the water a person needs to stay hydrated all factor into daily water use. The average person uses over 80 gallons of water a day.

You also have factories across the nation that rely on water for operations. An extrusion machine responsible for making things like the brake cables in cars needs water to cool the product to set the plastic coatings properly and prevent ovality or irregularity when it goes onto the spool. A food manufacturing plant uses water to wash food items before packaging, such as a poultry processing plant.

Almost half of the water drawn from freshwater sources is used in the creation of thermoelectric power. This is why it’s crucial to find other ways to generate electricity, such as solar or wind.

Even smaller businesses use a lot of water. Restaurants use a lot of water for sanitization and cooking. A grocery store needs water for cleaning tasks, bakery, deli, and butcher departments, and produce where misters keep vegetables fresh.

Looking at the National Centers for Environmental Information, several states had deficient precipitation levels during 2020. According to the reports, Nevada, New Mexico, Arizona, Utah, and Montana were the lowest.

The Palmer Drought Severity Index Rank listed eight states as the worst in the U.S.: California, Colorado, Montana, New Mexico, North Dakota, Oregon, Utah, and Wyoming.

In the fall of 2021, Lake Mead’s levels were low enough that the U.S. declared a water shortage. Arizona, Mexico, and Nevada all had their apportionments reduced by as much as 18%. This meant homeowners and business owners in dozens of cities and towns must reduce water consumption. One of the most significant effects is on farmers and ranchers who must find other ways to water crops and take care of their livestock.

When primary water sources like Lake Mead experience shortages, the effects can lead to hardship. Cities can overcome these shortages through efficient wastewater treatment plants and industrial wastewater treatment plants. Automation is one way to ensure a plant operates efficiently.

What Happens During Wastewater Treatment

Primary treatment steps in a wastewater treatment plant include screening out items like rocks, sticks, trash, and even animals like mice or rats that may find their way into sewers. Once screened from the wastewater, these items go to a landfill.

Pumps move the remaining wastewater into aeration tanks, where circulation adds oxygen to start the treatment process. Aeration helps oxygenate the wastewater to begin the breakdown of organic matter. Grit like coffee grounds and sand settle to the bottom of the tanks, where it’s removed and taken to compost piles or landfills. Excess water drains from the grit and goes to the next steps in wastewater treatment. The goal is to get as much water out of grit and solids as possible.

You have pumps, blowers, mixers, and motors all working together. They use energy and may need employees carefully monitoring levels of wastewater coming in. With automation, you save money by having technology tracking everything and turning things on and off as needed. Technology matches flow rates, maximizing performance and efficiency.

In sedimentation tanks, the sludge settles and is removed to digesters. Lighter materials like fat and oil rise to the surface, where they can be removed and added to sludge. Some water is added to the digesters, while the rest of it may go through filters to start cleaning any microscopic particles.

The waste in digesters is given time to break down, removing odor and bacteria. It can then go to landfills or be used as a fertilizer. The cleaner water goes into tanks where chemicals like chlorine are added to kill any remaining bacteria. Facilities may use UV lighting to remove excess chlorine before it’s returned to bodies of water or storage tanks for the public water system.

Water samples are drawn and tested throughout the process to collect essential data. It’s a time-consuming process.

Before wastewater can be released to the environment or public water systems, it must meet FDA standards. If it doesn’t and is released anyway, plants face hefty fines. Final water quality is another area where automation can make a difference.

How Can Automation Help?

Your aeration tanks and basins have blowers and pumps that use up to 60% of your plant’s energy. Are yours automated, or do you have employees turning them on and off as needed? Automation streamlines this and helps you avoid mistakes that can become costly if raw sewage is released.

The critical goals of wastewater treatment are to remove bacteria, viruses, and other pollutants and ensure ammonium, phosphate, and nitrogen levels are low before the water is released. Before release, you need to meet pH levels and remove any chemical disinfectants like chlorine. Properly cleaning wastewater requires much attention to water samples and blower rates. If you have automation monitoring the levels and adjusting as needed, you save money.

Plus, incoming wastewater flow rates change from one hour to the next. You might have more water coming in during peak hours before and after work and school and when manufacturing plants operate. When the members of your municipality are cooking meals, taking showers or baths, and doing laundry, the wastewater coming into the plant through sewer lines increases. When people are sleeping or factories are shut down, the flow is minimal.

Instead of having pumps and motors running at the same speeds during the day and night, automation adjusts their speeds to match the flow rates. That’s another one of the ways automation helps streamline your operations.

Talk to Us

How can we help? Lakeside Equipment’s SharpBNR Process Control system allows you real-time monitoring of your plant. Not only does it help improve energy efficiency, but it also works in tandem with your motors to ensure rotors adjust as needed to achieve the optimal oxygen levels for aeration.

Talk to us about SharpBNR Process Control and how it works with your SCADA system to streamline your wastewater treatment plant. Our experts can help you with equipment upgrades that ensure water is cleaned effectively, even if flow rates suddenly increase and put more demand on your equipment’s pumps and motors. We’d love to talk to you about streamlining your plant’s efficiency with automation. Give us a call.

Climate Change Brings About a Need to Look at Recycling Water

You’ve probably heard all about Lake Mead in the news. After reaching unheard of depths after years of drought conditions, two bodies and several sunken boats have been discovered in areas that used to be underwater. In areas like California and Arizona, drought conditions are drying up water sources and leading to grave concerns.

Weather patterns are changing. Areas that used to see rainfall or snow are experiencing droughts. Temperatures are going up, leading to unusually long droughts. It’s causing problems around the world, and experts are trying to figure out how to keep water from running out.

Water Shortages Around the World

Every continent is experiencing water shortages. It’s not just something happening in drier, hotter climates. As populations grow and temperatures increase, more water is being used than is being replenished. It takes a slow soaking rain to refill underground water sources like springs or gullies. These headwaters are where a river begins. Heavy rainfall may create quick, flooding water, but it will flow downstream before it helps replenish groundwater.

  • In Tulare County, California, dairy farms are digging their wells deeper and deeper to reach the groundwater. This is affecting neighbors with shallower drilled wells as they’re finding their own wells running dry.
  • Orange County in California found another problem happening. The draw on aquifers was so much that water from the ocean was able to seep in. They feared people would refuse to touch water that originated in a sewage treatment plant, but it was the only solution they could see.
  • In March, Governor Newsom signed an executive order banning well-drilling permits for any agricultural or industrial entity. In his executive order, he pointed out that water storage levels in Central Valley and Santa Clara Valley’s shared water reservoir are over 1 million acre-feet lower than in the prior year.
  • In Monterrey, Mexico, drought conditions led to city officials restricting residential water use to the hours of 4 a.m. to 10 a.m. Those six hours a day are all that the city’s 5.3 million people will be allowed to access. The hope is that this will help protect the city’s water supply.
  • The Californian town of Cambria announced in 2021 that after almost 40 years of depleting the town’s two primary water sources, they were almost out of water. As a level-four (of five) emergency was declared, residents were asked to cut water consumption by almost half. Plus, growth for this community was halted.
  • For some, that meant their applications to build on lots they own that already have water meters in place are being denied. Like many towns, Cambria is trying to figure out how to ensure community members can access water in their homes and businesses.
  • Las Vegas and Los Angeles are touted as an example of what communities can do. The city’s developers planned in advance. For decades, the city’s water system looked at water recycling and storage systems in the mountains as measures to take to prevent shortages. Plus, they request that people avoid outdoor watering to lower the demand on the city’s supplies during a drought.
  • Las Vegas pushes water recycling. Many of the resorts’ pools, fountains, and showers are designed to reuse water to lessen the draw on public water sources. Residential homes in Las Vegas no longer have grass. To prevent the need for watering lawns, artificial turf is used instead.
  • Melbourne, Australia, experienced a severe drought from 1997 to 2009. During part of that time, the city’s population also increased by over a million people. Water use increased by more than 10% in five years. During that time, the city added water recycling plants to try to lessen the demand for public water supplies.

Water recycling is the wave of the future. Some cities and districts are discovering the benefits. It’s time you did, too. It’s the best way to lower the demand on lakes, rivers, ponds, and other bodies of water. Has your industrial or agricultural business or wastewater district considered the benefits of wastewater recycling? It’s time.

What Is Wastewater Recycling?

Wastewater recycling is an act where you clean and reuse water. Any homeowner that has barrels under gutters and uses that rainwater to water vegetable gardens is recycling water. On a grander scale, a water treatment plant can clean, disinfect, and return wastewater to a community’s water supply.

Across the country, municipal water supplies draw from a lake or river, clean the water, and send it to tanks for the public water system. Residents and business owners draw from those tanks every time they flush a toilet, do the laundry, take a shower, wash dishes, etc. The average person uses 101.5 gallons of water per day. It’s a lot of water being taken from water bodies.

Take Boston, Massachusetts, and the city’s population of 696,959. In one day, the average use means more than 70 million gallons of water are used. That’s one day! By the end of a year, more than 25 billion gallons of water are pulled from municipal water sources.

While many water treatment plants clean water coming from septic systems and sewers and return that water to local bodies of water, the water could go right into storage tanks to be used over and over. That reduces the draw of water from the usual sources like lakes and rivers.

How Does Water Recycling Work?

The Orange County Water District’s water recycling plant was developed back in the 1970s. Today, it generates about 35 million gallons of drinking water each day but can produce as much as 100 gallons. It’s slated to undergo an expansion in 2023, enabling the system to create 130 million gallons of public water each day.

How does it work? Wastewater goes from the wastewater treatment plant to the Groundwater Replenishment System (GWRS). There it goes through five steps.

  1. Pre-Purification

After going through screening, grit chambers, filters, activated sludge, clarifiers, and final disinfection, the treated wastewater is pumped to the GWRS division. The wastewater is tested to ensure it meets the requirements after leaving the wastewater treatment plant.

  1. Microfiltration

As long as the treated wastewater meets the requirements, the water goes through microfiltration. Water passes through very thin straw-like fibers through tiny holes. Those holes capture any bacteria, viruses, protozoa, and microscopic solids.

  1. Reverse Osmosis

Once the water passes through the microfiltration step, it goes into reverse osmosis membranes to remove any pharmaceuticals and dissolved chemicals. After this process, the water is cleaned to a point that it’s similar to distilled water. To stabilize it, minerals must be added back in.

  1. UV Lights

Hydrogen peroxide and UV lights are the final step in disinfecting and killing off any remaining organics that got through the other stages.

  1. Water Delivery

Now that the water is completely clean and safe for drinking, it’s pumped into injection wells to prevent saltwater seepage and the rest recharges the basins. It filters through the sand and gravel to replenish the groundwater basins where public water is drawn from.

The wave of the future will be recycling water like Orange County is doing. Reusing water that’s consumed is key. Is your district considering taking this step? Reach out to Lakeside Equipment to learn more about the right pumps and biological treatment systems needed to replenish city water supplies with treated wastewater.

Understanding the Three Types of Wastewater – Domestic, Industrial, and Stormwater

In broad terms, wastewater is water that’s been used in some way. It could be water that’s built up in clouds and is now coming down as rain or snow. It’s water that an industrial plant uses to wash food items, rapidly cool down extruded items, or to make items like paper. You also have domestic wastewater that comes from homes.

It’s estimated that 48% of wastewater today isn’t treated before it’s returned to a lake, stream, river, pond, ocean, etc. In districts with wastewater treatment plants, all it takes is one piece of broken equipment to create chaos that leads to the release of untreated wastewater. The importance of properly treating wastewater is critical, especially as many areas experience droughts of unbelievable levels.

Untreated wastewater is part of the problem today. There’s also a problem with water consumption. People need to start weighing their water usage and how to make sure the nation doesn’t run out in future generations.

What can a district do to ensure wastewater, no matter what kind, is properly treated? How do you recycle wastewater to help lower the draw on the nation’s water supplies? To better understand this, take a close look at the three types of wastewater.

Domestic Wastewater

Every day, a person within a home uses an average of 82 gallons of water in some way. It’s estimated that more than twice that is also wasted through water leaks or wasteful habits. Doing the laundry, flushing a toilet, washing your hands, and washing a pet all create stormwater. These are all examples of domestic wastewater.

Domestic water enters sewers from pipes that run from your home to the sewer lines. From there, it continues traveling through the sewer system to a wastewater treatment plant.

More rural areas have septic tanks and septic systems. Solid waste materials like toilet paper, small food particles, and feces sink to the bottom of the septic tank. Liquids travel through an effluent filter and piping to the leach field where it slowly trickles through sand and bedrock to clean it before it returns to the groundwater. The solids in the tank get pumped out every few years, depending on how many people live in the home. They’re transported by septage hauler to a wastewater treatment plant.

Water conversation at this level helps preserve excessive water waste. Simple lifestyle changes can make a difference. Such as:

  • Flushing a toilet less frequently.
  • Turning off the water while you brush your teeth or lather your hands.
  • Wearing the same pants several times if they’re not stained or dirty.
  • Saving water that’s been used to steam vegetables to make vegetable broth.
  • Waiting until a dishwasher is full to run it.
  • Taking one shower a day instead of two or three.
  • Placing rain barrels under gutters and using that to water gardens and lawns.
  • Planting grass and crops that are drought-tolerant.

All of these measures will make a difference, but it’s not just for people producing domestic wastewater to resolve. Steps need to be taken to prevent waste and pollution with all three types of wastewater.

Industrial Wastewater

Industrial wastewater is the wastewater generated by manufacturing plants, food processing plants, oil and gas companies, mines, breweries, paper mills, and many other commercial businesses.

In areas where droughts are common, some companies must establish their own on-site wastewater treatment plants to recycle as much water as they can. Hotels in Las Vegas are one example, they must reuse water instead of drawing on public water supplies to do things like add water to their pools. The same is true of companies like car washes where a lot of water is used.

Many companies that generate industrial wastewater must pre-treat the water before releasing it into the sewer system. If they don’t, they put a strain on systems by sending excessive amounts of heavy metals, chemicals, bacteria, etc. to the wastewater treatment plant for processing. It’s a costly process, so pre-treatment ensures the company responsible for generating the industrial wastewater does its part to help clean the water.

Stormwater

The final type of wastewater is one that people don’t often think of as being wastewater. When there is a heavy storm, rain falls in the streets and goes into storm drains. This is known as stormwater or storm runoff. From there, it may go to a wastewater treatment plant, but that’s not as common as having the stormwater runoff go directly to a channel that leads to a body of water.

As stormwater runoff is not always treated, things that the stormwater picks up along the way end up in a freshwater source nearby. It might be automotive fluids that puddled up from a leak in a car’s engine. Salt that’s spread on the roads in the winter, liquid manure, and animal waste are all things that can end up in stormwater.

Stormwater runoff is an area of concern, as too much rain or snowmelt at once can overload an older system and lead to sewage and stormwater mixing and ending up going to area water sources without treatment, which is a health hazard.

Many cities are starting to realize the importance of finding a way to manage stormwater. Green infrastructure plans help filter out some of the waste from stormwater by adding green roofs, rain gardens, and rain barrels to help capture some of the rain that falls or snow that melts. Plants are able to pre-filter the storm runoff before it reaches bodies of water.

Making Wastewater Treatment More Efficient and Effective

Proper wastewater treatment ensures that wastewater is cleaned of most contaminants before it returns to a lake, river, pond, etc. Not everything is removed through wastewater treatment. Researchers are finding levels of antidepressants and other prescription medications in aquatic animals. Because of this, research is constantly taking place to find better filtration methods and more effective treatment measures.

Another aspect is water reuse. Across the country, water shortages are becoming more and more apparent. Lake Mead is an example of this. The lake is at the lowest level in history, and severe water conservation efforts are underway or there will be shortages. Water reuse is essential. People may not like the idea of drinking water that came from a toilet or washing machine, but it’s important.

Wastewater districts need to make sure the public knows that recycled water is just as safe as the water they currently use. Sometimes, it’s even cleaner.

Consider adding a water treatment plant to your existing wastewater treatment plant. Instead of sending the treated wastewater to a body of water, it goes to a water treatment plant for further processing before it goes to the public water supply for use. Water reclamation has to happen, and your district should look into the upgrades needed. With government grants available for upgrading the infrastructure, it’s a great time to learn more.

Lakeside Equipment specializes in water treatment equipment and facilities. Give us a call or reach out to us via email to learn more about what your wastewater district plant would need to do to upgrade your system to be efficient and cost-effective while creating a clean water source for area residents and businesses to draw on.

How Can You Prevent Overflow Situations When It Floods?

During Hurricane Ian, upwards of 20 inches of rain fell in southwestern Florida. Bradenton is one of many water treatment plants that had no choice but to release millions of gallons of wastewater into a nearby river. A spill of 7.2 million gallons of sewer water leaked into the Indian River Lagoon. Miami saw thousands of gallons of sewage overflow into storm drains. These are just two of a long list of issues, and it’s not a problem Florida officials are seeing for the first time.

During two hurricanes in 2016, 250 million gallons of raw sewage spilled into the environment. Millions of gallons leaked during Hurricane Irma in 2017. One area that saw no issues was the Florida Keys, where $1 billion in upgrades led to sealed pipes and an advanced wastewater treatment system that removes nitrogen and releases the treated water over 3,000 feet below sea level.

Florida isn’t the only state experiencing raw sewage spills during flooding rains. Back in January, 8.5 million gallons of sewage spilled into a Los Angeles waterway. Wisconsin Rapids saw about 165,000 gallons overflow into the Wisconsin River.

These sewage spills are public health hazards. The raw sewage is rife with pathogens like E. coli, campylobacter, and salmonella. Nitrogen in the waste can lead to algae blooms in the rivers, lakes, and oceans.  When there are flooding rains, overflow situations are possible. How can you prevent them?

What Is Your Current Set-Up?

Combined sewer overflow is a system where stormwater runoff, sewage, and industrial wastewater all flow in one pipe to one wastewater treatment plant. If stormwater runoff increases in heavy rainfall or snowmelt, the excess water can become a problem for the treatment plant. Suddenly, there’s more water coming in than the equipment can handle and the plant has to release untreated wastewater to the lake or river.

Many cities and districts have moved away from this system, but approximately 700 of these systems still exist according to the EPA. They’re all bound to the 1994 CSO Control Policy and the Clean Water Act. If you’re in a district where this is the design, it’s time to consider a change.

Sanitary sewer systems are more common. Sewer and industrial wastewater travel to the wastewater treatment plant while storm runoff travels to storm drains and out to bodies of water from there. Storm runoff isn’t treated, so it’s important that area residents don’t pour chemicals down storm drains. 

Introducing the Integrated Planning Elements

A few years ago, Congress enacted the Water Infrastructure Improvement Act. The idea was to offer ways for districts to voluntarily begin to make changes in stormwater and wastewater planning in order to meet standards set forth in the Clean Water Act. There are six elements to the framework of the Water Infrastructure Improvement Act.

  1. Brainstorm and plan out the requirements and drivers.
  2. Map out the existing infrastructure in a municipality’s stormwater and wastewater systems.
  3. Connect with project stakeholders.
  4. Brainstorm, evaluate, and select alternative plans.
  5. Analyze the performance.
  6. Formally adopt the necessary changes.

Just over two dozen districts started to integrate measures or developed and completed their changes. As more money is being earmarked for infrastructure improvements, it’s time to look at the steps your wastewater and stormwater district can take to lower the chances of a sewage spill during flooding.

Look at Your Capacity and Add Flood-Proofing Measures

Stop and look at the current capacity of your wastewater treatment facility. If heavy rainfall is causing system overflows, it’s time to look at upgrades, repairs, and adding to the existing capacity. Not only can that increased capacity help in times of heavy rain, but it also helps with population growth in the years to come.

In addition, if your facility is in a low-lying area, it’s time to look at flood-proofing measures that help protect tanks, ponds, and other equipment. Flood barriers are ideal for keeping flood water away, and servers and network hubs need to be on higher ground. Submersible pumps will help protect your equipment. Use the EPA’s flood planning guide to determine if you could be impacted by a 100-year flood and get helpful tips on where you should focus your upgrades and changes.

Upgrade Your Older Equipment 

If you have older wastewater treatment equipment, it’s time to address the benefits of upgrading to newer, more efficient waterproof or submersible pumps and motors. Ideally, look for equipment that has adjustable motors that will work harder when flow rates increase and slow down when it decreases.

An addition of a bar screen may be enough to help with combined sewer overflows. If back-ups occur regularly as trash, sticks, branches, leaves, and other materials build up on screens, it’s time to look at better screening. With trash and other debris cleared and moved to a landfill, it allows water to flow correctly, which prevents overflows and costly fines.

If you don’t already have Supervisory Control and Data Acquisition (SCADA) technology, you need it. Computers can monitor how well the system is working and identify problems before they start. With flowmeters, facility personnel can spot overflows, chemical imbalances, and leaks and take immediate action. 

Plus, SCADA can help you automate your facility. You’ll still need operators, but you’ll have 24/7 monitoring to avoid overflows. Being able to analyze real-time data and get timely alerts is important when it comes to flood management and avoidance of fines and EPA violations.

Careful City Design Is Equally Important

A stormwater system and wastewater treatment plan should make upgrades to help prevent overflow situations, but it also helps if city planners look at environmentally-friendly changes that help with rainwater. 

Permeable surfaces are key to this process. Instead of paved roads, concrete sidewalks, and other impermeable structures that allow water to collect and flow like a river, add green areas where the water can soak in. Rain gardens, porous paving materials, and green roofs also help. 

Bioswales are also gaining popularity. These sunken areas along roads are filled with greenery and piping that helps complete the primary filtering before distributing the water that’s in excess of what the plants use.

Instead of building right on river banks, setting buildings farther away to allow for the rise of water in a floodplain is also important. 

Get Expert Advice from Lakeside Equipment

Work with an expert in water treatment designs, repairs, and installations. It’s important that your system be carefully designed to meet your growing community’s needs and changing weather patterns. Every measure you take to prepare your facility for flooding or heavy rain is important.

Lakeside Equipment specializes in water treatment and has been in business for nearly a century. Talk to us about your current treatment plant’s equipment and where you feel it’s falling short. We’ll help you design a cost-effective system that’s prepared for floods and population growth.

What Are the Stages of Wastewater Treatment

pump sucking water from treatment plant

When wastewater leaves a business or home, it enters the sewer pipes or heads to a septic tank and leach field. What happens from there? What are the stages of wastewater treatment and what can you do to have an efficient, effective wastewater treatment plant as you consider each of these stages?

Stage 1: Screening

Before anything else happens, wastewater and hauled septage have to go through screening. This is where the things that shouldn’t ever be flushed or allowed into sewer lines are filtered and removed. This includes items like a child’s toy, a plastic tampon application, rags, plastic wrappers, grease clumps, and pieces of wood. They are raked from the filters, rinsed to remove any waste products, and pressed to get out as much water as possible.

Items removed in the screening process go to landfills. The remaining wastewater moves to the second stage of wastewater treatment.

Stage 2: Grit Removal

Grit removal is a process where fine, gritty particles are removed from the wastewater. It includes particles like coffee grounds, sand, and gravel. They are removed by a pump after the grit settles on the floor of a grit chamber. From there, it gets hauled to a landfill. The remaining wastewater goes to clarifiers.

Stage 3: Primary Settling/Clarifying

At this point, the wastewater is rid of grit and trash. It sits in a circular tank to settle. Sludge sinks to the bottom of the tank, and fats float and collect on the surface. The wastewater between the two layers leaves the tank.

The fat layer is skimmed periodically from the surface, while the sludge is pumped out. Chemicals are introduced to start breaking down the phosphorus. 

Stage 4: Aeration

Aeration is the key step in processing wastewater. Pumps add air to the wastewater to help aerate it while microorganisms begin to digest the remaining sludge and pollutants and create a mixture of water, nitrogen, and cell tissue. 

Stage 4B: Activated Sludge

The remaining sludge goes through treatments of its own. To start, it is skimmed from the aeration tanks. Water is removed from the solids and returned to the start of the wastewater treatment process.

The thickened sludge mixes with primary sludge and is pumped to a primary digester. There, it’s heated and allowed to compost for over a month using anaerobic bacteria to help break it down. Pollutants from the sludge are digested by the bacteria and converted to carbon dioxide and methane gas, and water. 

After the bacteria has done its job, the remaining sludge is moved to a gravity belt where it’s mixed with a polymer that helps absorb all of the water. Water drains into a basin where it has to be slowly mixed back to the beginning of the wastewater treatment process because of its high ammonia content. Too much all at once creates problems.

The sludge goes to storage tanks where it sits for upwards of a year before going into tanker trucks to be spread at approved sites, such as fields and forest lands, to provide nutrients the soil needs for optimal plant health.

Stage 5: Secondary Settling/Clarifying

Wastewater is pumped to secondary clarifiers. At this point, the wastewater is 90% of the way to the finished product. Activated sludge is continually pumped out as it settles and goes back through Stage 4B.

Stage 6: Filtration

Now that the wastewater is cleaned. It’s filtered through some type of media. Different wastewater treatment plants rely on different types of filters. Some may use activated carbon filtration, some might rely on coconut fibers, and some use polyester. If any particles are on the filter, they’re washed and returned to Stage 1.

Stage 7: Disinfection

The filtered wastewater is now mixed with chemicals to kill any remaining bacteria or exposed to UV disinfection. Water is tested throughout the process to make sure it meets the required levels before it’s released to the area river, lake, pond, or water treatment plant for reuse.

Stage 8: Aeration

Some wastewater districts add one more step to aerate the cleaned wastewater to make sure it has the correct oxygen levels. Every wastewater treatment plan has requirements listed in its permit. Failure to complete the steps needed to bring the water quality to those levels can lead to hefty fines.

Consider Your Options for Hauled Septage

When a wastewater district also accepts septage from residences and businesses that are not on a sewer line, a septage acceptance plant is necessary. This is the station where trucks will pull up and pump out their tanks with the septage they’ve pumped out of septic tanks. 

Hauled septage is raked to remove any trash or grease clumps. The remaining wastewater and sludge get pumped to the screening stage of wastewater treatment. As septage haulers collect money from businesses and consumers and pay the wastewater district from those proceeds, you’ll want to have a computer system set up to track who is bringing in the septage, how much they dropped off, and bill them accordingly. 

Tips For Improving Effectiveness and Efficiency

You have to have a wastewater treatment plant that effectively cleans water in the most efficient manner possible. How do you ensure you’re cleaning the water effectively, avoiding raw sewage releases, and keeping costs down for the members of your wastewater district?

  1. Automation Eases Guesswork

Do you struggle to keep up with the flow rates at your facility? Do you have some days where your employees struggle with higher flow rates than estimated, so they have to constantly speed up or slow down pumps and motors? Or, do they run the motors at high speeds as a preventative measure, even when it’s unnecessary? It’s not an ideal way to operate your wastewater treatment plan.

If there’s heavy rain and your wastewater treatment plant and stormwater runoff are linked, it’s easy to flood and require raw sewage to be released. It’s not ideal for the environment. It’s also easily addressed by adding automation to your plant.

  1. Upgrade Older Equipment

Some of the easiest changes to your plant that will result in cost-saving measures are to look at the aeration system you use. Older pumps and motors can be upgraded to more energy-efficient models that do the job better while requiring less electricity.

  1. Consider Solar and Wind Power

It’s estimated that all of the municipal wastewater treatment plants in the U.S. use about $2 billion in electricity each year. Upwards of 40% of a plant’s operating costs come from the plant’s electricity consumption.

While it does cost money to establish solar or wind power systems at your plant, the savings over time are worthwhile. After a 10-acre solar panel farm was placed near the Moccasin Bend wastewater treatment plant in Tennessee and upgrades were made to some of the plant’s equipment, the plant’s power consumption dropped by $1.4 million per year. 

  1. Heat With Methane

A wastewater treatment plant ends up with methane being produced as part of the process. Why not use that methane gas to heat the plant? You’ll eliminate bills for propane, oil, natural gas, or electric heat during the winter months. 

Lakeside Equipment has decades of experience in wastewater treatment designs and equipment that boost your plant’s efficiency and keep up with changes in the flow rates during unexpected storms. We’ve been around since 1928 and provide you with an experienced engineer to design a system that meets your municipality’s needs and budget. 

From final design to installation and operation, our field engineers ensure your system is optimized to do everything you expect. Talk to our wastewater experts about the SharpBNR control system that reduces electricity costs and boosts your plant’s reliability. You can pair it with a SCADA system for optimal performance throughout your wastewater treatment plant.

How Advances in Wastewater Treatment Are Delivering Cleaner Water

Every advancement that a wastewater treatment plant incorporates helps provide people with cleaner water. If you look back through history, the government didn’t address water pollution until 1948. The Clean Water Act wasn’t established until 1972. At this point, there was finally a law with clear guidelines cities and towns had to follow to prevent polluted water from going back into U.S. bodies of water. It led to construction grants for areas that wanted wastewater treatment plants. It started making our water cleaner.

Since that day, water treatment advancements keep happening. The EPA offers guidelines into the pollutants that water districts must remove and test for. If water treatment hasn’t removed enough of the bacteria, heavy metal, or chemical, the public must be notified and told not to drink the water as it’s not safe and changes must be implemented. Water shouldn’t be released to lakes, rivers, ponds, and streams and if it is authorities must be notified.

Early Wastewater Plans

In the 1850s, London’s Thames River experienced what was known as “The Great Stink of 1858.” At that time, human and animal waste was simply deposited back into the river. During a particularly hot summer, that waste caused the river, which flowed past the Houses of Parliament, to reek and politicians left for their country homes because the smell was too much. They all agreed, however, that a new system needed to be implemented. That led to the creation of London’s first sanitation system and close to 100 miles of sewers.

An ABC system was created that mixed sewer water with alum, blood, clay, magnesium, and other ingredients. This mixture moved from one settling tank to the next before being discharged to a river. The problem was that the mixture only started to clean the water. Remaining solids were treated with sulfuric acid to reduce ammonia and used as fertilizer. This process didn’t work effectively and didn’t address the foul odors of the water and solids.

Meanwhile, scientists in Massachusetts started their own experiments using sand filters to purify sewer water. The tests were successful at removing many water-borne illnesses like typhoid. Additional experiments held back in England found that if the remaining sludge was aerated to remove organics and convert any remaining ammonia to nitrite.

Advancements in Water Treatment Equipment

Those steps led to the process of treating wastewater. Equipment is an important part of the process. Grit removal, screening, and oxidation work together to clean water. Water enters a water treatment plant and screw pumps help move it from one area to the next. Screens remove trash and larger objects that cannot be cleaned, such as tampon applicators or plastic wrappers. Sludge settles and is removed. Remaining fluids are aerated and Biological Nutrient Removal takes place to remove nitrogen and phosphorus. What advancements are helping with cleaner water?

#1 – Solar and Wind Powered Plants

One area where water treatment technologies are seeing important advancements are with sustainability. Sustainable water treatment technologies are helping further protect the environment and water sources. Earth.org states that while Earth’s surface is 3% water, no more than 0.5% of it can be used for drinking water. Many people get their water from underground aquifers, but there’s a danger of those drying up in the next 100 years. Reusing water is critical if we are to prevent water shortages. Reusing water requires effective cleaning, which requires power. Solar can help with effective cleaning that minimizes one’s carbon footprint.

Solar-powered water treatment equipment is a trending way to deliver clean water. If you’re harnessing the power of the sun to power a water treatment plant, it reduces the emissions going into the air. You don’t have the soot and smoke from fossil fuels going into the atmosphere that end up in the rain that falls back to the ground. While a water treatment plant will clean some storm runoff, a good deal of it also ends up in rivers and lakes. The acid rain contains nitrogen oxide and sulfur dioxide, which end up in bodies of water and increase water pollution. In addition to solar-powered water treatment equipment, wind power is also being used to eliminate the need for fossil fuels.

#2 – Water Reuse

Going back to water reuse, major companies are starting to understand the importance of reusing water. Nucor Steel realized how much it could cut its water usage by recycling the water they already use and using stormwater instead of cleaned water. These changes have led to a reduction of the water used and lowered its energy bills, too. Water consumption has declined by over 200 million gallons each year with these changes. Cleaner water is saved for homes, and the company’s water needs for cooling the steel products is met by claiming stormwater run-off and rain collection.

#3 – Improved Filtration

Clay, blood, and alum were some of the first filtration materials used. Sand was next. Clean water can also be filtered with charcoal. Most recently, scientists have been using sand coated in graphite oxide to filter water. Water filtered with the graphite oxide-coated sand is five times cleaner than water filtered through sand. It’s an important tool in removing dangerous substances like mercury. They’ve also found that ground plastic bottles that are coated with cysteine are an effective filter for arsenic.

Algae grow easily in water ponds where UV rays are used to kill bacteria. That algae can be dangerous, so it must be killed and removed with chemicals like chlorine and some kind of filtration. Scientists are working on chemical-free ways to kill the algae. One is to introduce bacteria that thrive on algae and break them down into harmless materials that are easily removed through filtration.

#4 – Low-Maintenance or Maintenance-Free Equipment

There’s also an issue with a crumbling infrastructure. Cities need to look at making sure that water isn’t being lost to sewer system water main breaks. Leaks or defective water treatment equipment must be repaired or replaced to prevent water loss. Newer, modern equipment that is constantly monitored by computers and adjusted as flows increase or decrease helps with this.

Smart technology is common in homes, but it’s also being used in water treatment plants for alerts that notify engineers if there is a leak or problem in the equipment. Faster repairs prevent water loss or the release of contaminated water to lakes, rivers, and other water sources. Newer water treatment technology also reduces the need for maintenance by incorporating bearings that are never submerged below water or improving grit removal to prevent damage from abrasion.

#5 – New Equipment Improves Efficiency

Choosing the right equipment is one of the best ways to embrace cleaning water while minimizing your carbon footprint. Have you looked at upgrading your water treatment plant or business with the latest equipment and sustainable practices? Have you thought about going solar at your water treatment plant?

There is an initial cost, but the savings in terms of energy usage and efficiency make that cost worth it. If you’re spending a lot of money on maintenance or repairs, it’s time to talk about upgrading your water treatment equipment. Lakeside Equipment launched in 1928 and strives to help municipalities come up with viable ways to clean water in responsible, environmentally-friendly ways. Call us to discuss your needs for high-quality, cost-effective water treatment equipment.

Wastewater Treatment Plant Construction

A wastewater treatment plant is only as good as it’s designed to be. If you cut corners and fail to consider growth, demand, and equipment durability, you end up wasting money. If you try to get the system constructed and up and running too quickly, it’s just as likely that costly issues will arise.

The EPA estimates that pre-construction alone can take up almost three years. Construction can take up to five years. The larger the plant, the longer it can take. This is why it’s important to partner with an expert in wastewater treatment plant construction with each step.

Five Steps to a Wastewater Treatment Plant Construction

Any wastewater construction project has five key steps. It starts with initial research and project planning and progresses to getting land and permits, construction, and testing operations. It sounds simple, but each of these steps is complex and must be carefully completed.

#1 – Initial Research

Prior to any wastewater treatment plant project, you need to do your research. You need to look into your available funds through grants, loans, etc. The system you design needs to provide the capacity you need. If your plant will be supporting 35,000 homes and businesses, you have to think about the land that’s currently being developed. Talk to town managers and zoning boards to see what goals have been set when it comes to development.

How many households or businesses will your system be supporting a year, five years, or a decade from now? It’s better to plan larger than needed to avoid having a system that’s at capacity and needs upgrades before you’ve paid off any loans and can comfortably afford upgrades without drastically increasing the fees or taxes those in your wastewater district have to pay.

Your plant will need power. Do you want to have solar panels added to help power the plant? Will you be incorporating boilers that can burn the solid waste that’s removed during water treatment? Burning the leftover solids can slash your heating bills and save money. If you’re being connected to the local power grid, make sure you’ve talked to them about costs and how to run lines from the nearest poles and substation to your new plant.

You also need to install roads. You need to see where the best access points are to main roads and do traffic studies to see if the extra traffic will cause traffic jams. You also have to make sure that trucks hauling waste from homes and businesses with septic systems aren’t going to be overweight.

Finally, look at where there is enough available land for a wastewater treatment plant. You may not be able to build it where you first hoped if there is no land for sale or lease. While looking at availability, you also have to stop and think about the pros and cons of buying the land outright versus leasing it.

#2 – Project Planning

You need to hold meetings with shareholders, government agencies, and owners to discuss a budget. Go over possible delays and issues and figure out the best ways to address problems. If you have a plan in place, an unexpected issue with weather, permits, or illness can quickly be resolved.

While figuring out the budget, you also want to consider how much the people in the district can afford in extra taxes. If you can find ways to save money, it helps them out. They’re less likely to be upset by the cost of a new plant if the impact on their living expenses isn’t great.

What types of wastewater will your plant handle? Will you also be dealing with storm runoff? Is it only going to be piped in from the sewer system or will you have a hauled waste receiving system, too? Maybe you need both? Do you want to pick and choose the equipment that’s installed or would an all-in-one system like a Raptor Complete Plant be better for your needs?

You can take time researching all of the equipment, flow rates, and capacities on your own, but will you understand all of the intricate differences. That’s why it’s better to hire engineers that specialize in wastewater treatment to help you make these decisions.

As you go through all of this, create checklists to follow during the permitting and construction phase. You’ll go over these checklists with the company you hire to help you with the construction and installation of your wastewater treatment plant.

#3 – Permits

You have your plans in place. The budget is set and funds are available. You’ve chosen the company you want, and they’ve lined up engineers and technicians to work with you. Before construction can start, permits must be acquired. Not only do you need building permits from the town or city, but you also have to have permits from the EPA.

The EPA is going to set limits on how much untreated sewage is allowed to be discharged if storm runoff levels are higher than expected. A Pollution Abatement Facility Operator License is needed. Your wastewater treatment plant will need to be classified depending on if it is low flow or high flow.

#4 – Construction

With a new wastewater treatment plant, you’re not just constructing the plant. You’re also creating the roads that lead to your plant, getting utilities connected, and putting in any additional buildings that are needed for storage or administrative functions.

Someone needs to keep the project on schedule. You’ll have engineers working with construction managers to make sure workers stay on track. If there are going to be delays, you’ll need to understand why. Every day of extra labor and delays will eat into your budget. It doesn’t take long before you’re running over the budget and struggling to come up with the extra funds.

#5 – Testing Operations

Once the wastewater treatment plant’s construction is done. You have to run tests to ensure everything is running. You don’t want to open straight up into full capacity before the team has tested to make sure the pumps are working properly and that nothing is leaking. Once the system is up and running, you need to keep testing the cleaned water to make sure it meets requirements. Computerized systems and monitoring can make this easier to manage.

Questions to Ask Your Project Partners

Before you choose a partner to help you plan, choose the right equipment, and get your plant operational, you need to know how to choose the right company. This choice is the most important one you’ll make. How do you know how to find the right company? You need to ask questions and listen carefully to the answers.

Start by asking the company about their experience. Lakeside Equipment began designing, developing, and installing water purification systems in the 1920s. We pride ourselves in creating high-quality systems that match our clients’ budgets. Using the most current CAD programs, we design systems that are meant to exceed expectations that require minimal maintenance in many situations. Field engineers are on-site for installations.

Ask for details about projects the company has worked on. Morgan City, Utah, needed a new wastewater treatment plant to meet the needs of a growing community. The city worried about the current system’s downtime while the new system was readied. They opted to have Lakeside Equipment install a stainless steel H-PAC system, which was oversized to increase the peak flow to exceed the estimated peak flow rate for the next 20 years. Morgan City has since found that maintenance is minimal and the new wastewater treatment plant is exceeding expectations.

Give Lakeside a call. Our specialists are happy to help you plan and construct a wastewater treatment plant that helps you as much as Morgan City’s new system is helping them.